440 resultados para Femtosecond lasers
Resumo:
A novel technique of controlling the evolution of the filamentation was experimentally demonstrated in an argon gas-filled tube. The entrance of the filament was heated by a furnace and the other end was cooled with air, which resulted in the temperature gradient distribution along the tube. The experimental results show that multiple filaments are merged into a single filament and then no filament by only increasing the temperature at the entrance of the filament. Also, the filament can appear and disappear after increasing the local temperature and input pulse energy in turn. This technique offers another degree of freedom to control the filamentation and opens a new way for multi-mJ level monocycle pulse generation through filamentation in the noble gas.
Resumo:
We demonstrate the coherent linking of periodic nano-ripples formed on the surface of ZnO crystals induced by femtosecond laser pulses. By adjusting the distance between two laser scanning zones, the periodic nano-ripples induced by two separated laser writing processes can be coherently linked and the ZnO nanograting with much longer grooves is therefore produced. The length limitation of this kind of nanograting previously set by the laser focus size is thus overcome. The micro-Raman mapping technique is used to evaluate the quality of coherent linking, and the underlying physics is discussed. The demonstrated scheme is promising for producing large-size self-organized nanogratings induced by femtosecond laser pulses.
Resumo:
We experimentally investigate the generation of high-order harmonics in a 4-mm-long gas cell using midinfrared femtosecond pulses at various wavelengths of 1240 nm, 1500 nm, and 1800 nm. It is observed that the yield and cutoff energy of the generated high-order harmonics critically depend on focal position, gas pressure, and size of the input beam which can be controlled by an aperture placed in front of the focal lens. By optimizing the experimental parameters, we achieve a cutoff energy at similar to 190 eV with the 1500 nm driving pulses, which is the highest for the three wavelengths chosen in our experiment.
Resumo:
The interaction of a circularly polarized laser pulse with a mixed solid target containing two species of ions is studied by particle in cell simulations and analytical model. After the interaction tends to be stable, it is demonstrated that the acceleration is more efficient for the heavier ions than that in plasmas containing a single kind of heavy ion and the acceleration efficiency is higher when its proportion is lower. To obtain monoenergetic heavy-ion beams, a sandwich target with a thin mixed ion layer between two light ion layers and a microstructured target are proposed. The influences of parameters of the laser pulse and target on ion acceleration are discussed in detail. It is found that, when the target is thick enough, a cold target is more appropriate for heavy-ion acceleration than a warm target, and the velocity of the reflected heavy ions is proportional to the laser amplitude.
Resumo:
unavailable<br>H. Sun's e-mail address is shy780327@siom.ac.cn.
Resumo:
We report on the damage threshold in CaF2 crystals induced by femtosecond laser at wavelengths of 800 nm and 400 nm, respectively. The dependences of ablation depths and ablation volumes on laser fluences are also presented. We investigate theoretically the coupling constants between phonon and conduction band electrons (CBE), and calculate the rates of CBE absorbing laser energy. A theoretical model including CBE production, laser energy deposition, and CBE diffusion is applied to study the damage mechanisms. Our results indicate that energy diffusion greatly influences damage threshold and ablation depth.
Resumo:
The characteristics of backward harmonic radiation due to electron oscillations driven by a linearly polarized fs laser pulse are analysed considering a single electron model. The spectral distributions of the electron's backward harmonic radiation are investigated in detail for different parameters of the driver laser pulse. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width the broadening of the high harmonic radiations can be controlled.
Resumo:
The characteristics of harmonic radiation due to electron oscillation driven by an intense femtosecond laser pulse are analyzed considering a single electron model. An interesting modulated structure of the spectrum is observed and analyzed for different polarization. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width broadening of the high harmonic radiations can be limited. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8x10(6)Pa) into vacuum through a conical nozzle cryogenically cooled by liquid nitrogen. The average size of hydrogen clusters was estimated by Rayleigh scattering measurement and the maximum proton energy of up to 4.2keV has been obtained from the Coulomb explosion of hydrogen clusters under 2 x 10(16)W/cm(2) laser irradiation. Dependence of the maximum proton energy on cluster size and laser intensity was investigated, indicating the correlation between the laser intensity and the cluster size. The maximum proton energy is found to be directly proportional to the laser intensity, which is consistent with the theoretical prediction.
Resumo:
A pump and probe system is developed, where the probe pulse duration tau is less than 60 fs while the pump pulse is stretched up to 150-670 fs. The time-resolved excitation processes and damage mechanisms in the omnidirectional reflectors SiO2/TiO2 and ZnS/MgF2 are studied. It is found that as the pump pulse energy is higher than the threshold value, the reflectivity of the probe pulse decreases rapidly during the former half, rather than around the peak of the pump pulse. A coupled dynamic model based on the avalanche ionization (AI) theory is used to study the excitation processes in the sample and its inverse influences on the pump pulse. The results indicate that as pulse duration is longer than 150 fs, photoionization (PI) and AI both play important roles in the generation of conduction band electrons (CBEs); the CBE density generated via AI is higher than that via PI by a factor of 10(2)-10(4). The theory explains well the experimental results about the ultrafast excitation processes and the threshold fluences. (c) 2006 American Institute of Physics.
Resumo:
We investigate the evolution of filamentation in air by using a longitudinal diffraction method and a plasma fluorescence imaging technique. The diameter of a single filament in which the intensity is clamped increases as the energy of the pump light pulse increases, until multiple filaments appear. (c) 2006 Optical Society of America.
Resumo:
We report the single-shot damage thresholds of MgF2/ZnS onmidirectional reflector for laser pulse durations from 50 A to 900 fs. A coupled dynamic model is applied to study the damage mechanisms, in which we consider not only the electronic excitation of the material, but also the influence of this excitation-induced changes in the complex refractive index of material on the laser pulse itself. The results indicate that this feedback effect plays a very important role during the damage of material. Based on this model, we calculate the threshold fluences and the time-resolved excitation process of the multiplayer. The theoretical calculations agree well with our experimental results. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The recent advancements of femtosecond (fs) holography are introduced. The experimental requirements and the time resolution are presented. Applications of femtosecond holography to signal processing, and other femtosecond holographic techniques such as femtosecond holographic imaging and microprocessing are detailed. A potential alternative of femtosecond holography is proposed, based on the sectional interference of reference pulse with the time stretched signal pulse. (c) 2005 Elsevier B.V. All rights reserved.