245 resultados para Ethylene Signaling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silica and Merrifield resin were used as carriers for the support of alpha-diimine nickel(II) precatalysts for ethylene polymerization. The alpha-diimine ligands containing allyl were modified by introducing the reactive Si-Cl end-group, allowing their immobilization via a direct reaction of the Si-Cl groups with the silanols on silica surface or the hydroxyls on the ethanolamine-modified Merrifield resin. The resulting supported alpha-diimine ligands were characterized by analytical and spectroscopic techniques (NMR and Fr-IR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vanadium(III) complexes bearing salicylaldiminato ligands (2a-k) [RN=CH(Ar0)]VCl2(THF)2 (Ar C61714, R = Ph, 2a; p-CF3Ph, 2b; p-CH3Ph, 2c; 2,6-Me2Ph, 2d; 2,6-iPr2Ph, 2e; cyclohexyl, 2f; Ar = C6H3tBu(2), R = Ph, 2g; 2,6-iPr2Ph, 2h; Ar = C6H2tBU2(2,4), R = Ph, 2i; 2,6-iPr2Ph, 2j; Ar = C6H2Br2, R = Ph, 2k) were prepared from VC13(THF)3 by treating with 1.0 equiv of (RN=CH)ArOH in tetrahydrofuran (THF) in the presence of excess triethylamine (TEA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of new titanium complexes with two asymmetric bidentate beta-enaminoketonato (N,O) ligands (4b-t), [RN=CCF3)CHC(t-BU)O](2)TiCl2 (4b, R = -C6H4F(o); 4c, R = -C6H4F(m);4d, R = -C6H4F(p); 4e, R = - C6H3F2(2,3); 4f, R = -C6H3F2(2,4); 4g, R = -C6H3F2(2,5); 4h, R = -C6H3F2(2,6); 4i, R = -C6H3F2(3,4); 4j, R = -C6H3F2(3,5); 4k, R = -C6H2F3(2,3,4); 4l, R = -C6H2F3(3,4,5); 4m, R = -C6H4CF3(o); 4n, R =-C6H4CF3(m); 4o, R = -C6H4CF3(p); 4p, R = -C6H4Cl(p); 4q, R = -C6H4I(p); 4r, R = -C6H4NO2(P); 4s, R = -CH2C6H5; 4t, R = -C6H11), have been synthesized and characterized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenation of alpha,beta-unsaturated aldehydes (citral, 3-methyl-2-butenal, cinnamaldehyde) has been studied with tetrakis(triphenylphosphine) ruthenium dihydride (H2Ru(TPP)(4)) catalyst in a poly(ethylene glycol) (PEG)/ compressed carbon dioxide biphasic system. The hydrogenation reaction was slow under PEG/ H-2 biphasic conditions at H-2 4 MPa in the absence of CO2. When the reaction mixture was pressurized by a non-reactant of CO2, however, the reaction was significantly accelerated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of coil-rod-coil triblock copolymers (i.e., F3T8EO8, F3T8EO17, F3T8EO45, and F3T8EO125) with a mesogenic monodisperse conjugated oligomer comprising 3 fluorene, 8 thiophene, and 2 phenyl units as the rod and poly(ethylene oxide) (PEO) as the coil were synthesized. A reference compound, that is F3T8ME2, with the identical rod but without PEO was also prepared for comparison. The volume fraction of PEO (f(PEO)) was 0, 0.16, 0.28, 0.50, and 0.73 for F3T8ME2, F3T8EO8, F3T8EO17, F3T8EO45, and F3T8EO125, respectively. It was found that the introduction of PEO into the triblock copolymers encouraged the formation of H-type aggregation and f(PEO)-dependent highly ordered mesophases while f(PEO) < 0.73. For F3T8ME2, only nematic mesophase was observed. In contrast, F3T8EO8 and F3T8EO17, with f(PEO) of 0.16 and 0.28, respectively, are smectic A (SA) mesomorphism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of morphologies of isothermally crystallized thin films with different thicknesses of poly(L-lactide-bethylene oxide) diblock copolymer was observed by optical microscopy (OM) and atomic force microscopy (AFM). Dendritic superstructures stacked with lamellae were investigated in thin films with similar to 200 nm to similar to 400 nm thickness. The lamellar structure was a lozenge- or truncated-lozenge-shaped single crystal of PLLA confirmed by AFM observations. The contour of the dendritic superstructures is hexagonal, and two types of sectors, [110] and [100], can be classified in terms of the chain-folding and crystal growth directions. These phenomena Are due to the interplay of the crystallization of the PLLA block, the microphase separation of the block copolymer, and the effect of the film thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three Polypropylene/Poly(ethylene-co-propylene) (PP/EPR) in-reactor alloys produced by a two-stage slurry/gas polymerization had different ethylene contents and mechanical properties, which were achieved by controlling the copolymerization time. The three alloys were fractionated into five fractions via temperature rising dissolution fractionation (TRDF), respectively. The chain structures of the whole samples and their fractions were analyzed using high-temperature gel permeation chromatography (GPC), Fourier transform infrared (FT-IR), C-13 nuclear magnetic resonance (C-13 NMR), and differential scanning calorimetry (DSC) techniques. These three in-reactor alloys mainly contained four portions: ethylenepropylene random copolymer (EPR), ethylene-propylene (EP) segmented and block copolymers, and propylene homopolymer. The increased copolymerization time caused the increased ethylene content of the sample. The weight percent of EPR, EP segmented and block copolymer also became higher.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have synthesized a porous co-polyimide film by coagulating a polyimide precursor in the non-solvent and thermal imidization. Factors affecting the morphology, pore size, porosity, and mechanical strength of the film were discussed. The porous polyimide matrix consists of a porous top layer and a spongy sub-structure with micropores. It is used as a porous matrix to construct sulfonated poly(styrene-ran-ethylene) (SPSE) infiltrated composite membrane for direct methanol fuel cell (DMFC) application. Due to the complete inertness to methanol and the very high mechanical strength of the polyimide matrix, the swelling of the composite membrane is greatly suppressed and the methanol crossover is also significantly reduced, while high proton conductivity is still maintained. Because of its higher proton conductivity and less methanol permeability, single fuel cell performance test demonstrated that this composite membrane outperformed Nafion membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein, an insulating fluorinated polyimide (F-PI) is utilized as an ultrathin buffer layer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in polymer light-emitting diodes to enhance the device performance. The selective solubility of F-PI in common solvents avoids typical intermixing interfacial problems during the sequential multilayer spin-coating process. Compared to the control device, the F-PI modification causes the luminous and power efficiencies of the devices to be increased by a factor of 1.1 and 4.7, respectively, along with almost 3-fold device lifetime enhancement. Photovoltaic measurement, single-hole devices, and X-ray photoelectron spectroscopy, are utilized to investigate the underlying, mechanisms, and it is found that the hole injection barrier is lowered owing to the interactions between the PEDOT:PSS and F-PI. The F-PI modified PEDOT:PSS layer demonstrates step-up ionization potential profiles from the intrinsic bulk PEDOT:PSS side toward the F-PI-modified PEDOT:PSS surface, which facilitate the hole injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition of lamellar crystal orientation from flat-on to edge-on in ultrathin films of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) via solvent vapor (toluene) treatment Was investigated. When the as-prepared film was treated in saturated solvent vapor, breakout crystals could form quickly, and then they transformed from square single crystals (flat-on lamellae) to dendrites and finally to nanowire crystals (edge-on lamellae). Initially, heterogeneous nucleation tit the polymer/substrate interface dominated the structure evolution, leading to flat-on lamellar crystals orientation. And the transition from faceted habits to dendrites indicated a transition of underlying mechanism from nucleation-controlled to diffusion-limited growth. As the solvent molecules gradually diffused into the polymer/substrate interface, it will subsequently weaken the polymer-substrate interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Blocked isocyanate-functionalized polyolefins have great potential for use in semicrystalline polymer blends to obtain toughened polymers. In this study, poly(butylene terephthalate) (PBT) was blended with allyl N-[2-methyl-4-(2-oxohexahydroazepine-1 -carboxamido)phenyl] carbamate-functionalized poly(ethylene octene) (POE-g-AMPC).RESULTS: New peaks at 2272 and 1720 cm(-1), corresponding to the stretching vibrations of NCO and the carbonyl of NH-CO-N, respectively, in AMPC, appeared in the infrared spectrum of POE-g-AMPC. Both rheological and X-ray photoelectron spectroscopy results indicated a new copolymer was formed in the reactive blends. Compared to uncompatibilized PBT/POE blends, smaller dispersed particle sizes with narrower distribution were found in the compatibilized PBT/POE-g-AMPC blends. There was a marked increase in impact strength by about 10-fold over that of PBT/POE blends with the same rubber content and almost 30-fold higher than that of pure PBT when the POE-g-AMPC content was 25 wt%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: How to promote the formation of the gamma-form in a certain propylene-ethylene copolymer (PPR) under atmospheric conditions is significant for theoretical considerations and practical applications. Taking the epitaxial relationship between the alpha-form and gamma-form into account, it is expected that incorporation of some extrinsic alpha-crystals, developed by propylene homopolymer (PPH), can enhance the crystallization of the gamma-form of the PPR component in PPR/PPH blends.RESULTS: The PPH component in the blends first crystallizes from the melt, and its melting point and crystal growth rate decrease with increasing PPR fraction. On the other hand, first-formed alpha-crystals of the PPH component can induce the lateral growth of PPR chains on themselves, indicated by sheaf-like crystal morphology and positive birefringence, which is in turn responsible for enhanced crystallization of the gamma-form of the PPR component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epsilon-caprolactam was used to block the isocyanate group to enhance the storage stability of allyl (3-isocyanate-4-tolyl) carbamate. The spectra of FTIR and NMR showed that blocked allyl (3-isocyanate-4-tolyl) carbamate (BTAI) possesses two chemical functions, an 1-olefin double bond and a blocked isocyanate group. The FTIR spectrum showed BTAI could regenerate isocyanate group at elevated temperature. DSC and TG/DTA indicated the minimal dissociation temperature was about 135 degrees C and the maximal dissociation rate appeared at 226 degrees C. Then the styrene-b-(ethylene-co-1-butene)-b-styrene triblock copolymer (SEBS) was functionalized by BTAI via melt free radical grafting. The effect of temperature, monomer and initiator concentrations on the grafting degree and grafting efficiency was evaluated. The highest grafting degree was obtained at 200 degrees C. The grafting degree and grafting efficiency increased with the enhanced concentration of BTAI or initiator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional flowerlike Lu2O3 and Lu2O3:Ln(3+) (Ln = Eu, Th, Dy, Pr, Sm, Er, Ho, Tm) microarchitectures have been successfully synthesized via ethylene glycol (EG)-mediated hydrothermal method followed by a subsequent heat treatment process. X-ray diffraction, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectra, thermogravimetric and differential thermal analysis, elemental analysis, inductively coupled plasma atomic absorption spectrometric analysis, ion chromatogram analysis, X-ray photoelectron spectra, scanning electron microscopy, transmission electron microscopy, photoluminescence spectra as well kinetic decays, and cathodoluminescence spectra were used to characterize the samples. Hydrothermal temperature, EG, and CH3COONa play critical roles in the formation of the lutetium oxide precursor microflowers. The reaction mechanism and the self-assembly evolution process have been proposed. The as-formed lutetium oxide precursor could transform to Lu2O3 With their original flowerlike morphology and slight shrinkage in the size after postannealing process.