123 resultados para ENERGY-SPECTRA
Resumo:
A high energy shift of the band-band recombination has been observed in the photoluminescence (PL) spectra of the strained InP epilayer on GaAs by metalorganic chemical vapor deposit. The strain determined by PL peak is in good agreement with calculated thermal strain. The surface photovoltalic spectra gives the information about energy gap, lattice mismatching, and composition of heteroepilayers, diffusion length, surface, and interface recombination velocity of minority carriers of heteroepitaxy layers.
Resumo:
A high-energy shift of the band-band recombination has been observed in photoluminescence spectra of the strained InP layer grown on GaAs substrate. The InP layer is under biaxial compressive strain at temperatures below the growth temperature, because the thermal expansion coefficient of InP is smaller than that of GaAs. The strain value determined by the energy shift of the band-edge peak is in good agreement with the calculated thermal strain. A band to carbon acceptor recombination is also identified.
Resumo:
The reduction of exciton binding energy induced by a perpendicular electric field in a stepped quantum well is studied. From continuous-wave photoluminescence spectra at 77 K we have observed an obvious blueshift of the exciton peak due to a spatially direct-to-indirect transition of excitons. A simple method is used to calculate the exciton binding energy while the inhomogeneous broadening is taken into account in a simple manner. The calculated result reproduces remarkably well the experimental observation.
Resumo:
The valence hole subbands, TE and TM mode optical gains, transparency carrier density, and radiative current density of the zinc-blende GaN/Ga0.85Al0.15N strained quantum well (100 Angstrom well width) have been investigated using a 6 X 6 Hamiltonian model including the heavy hole, Light hole, and spin-orbit split-off bands. At the k = 0 point, it is found that the light hole strongly couples with the spin-orbit split-off hole, resulting in the so+lh hybrid states. The heavy hole does not couple with the light hole and the spin-orbit split-off hole. Optical transitions between the valence subbands and the conduction subbands obey the Delta n=0 selection rule. At the k not equal 0 points, there is strong band mixing among the heavy hole, light hole, and spin-orbit split-off hole. The optical transitions do not obey the Delta n=0 selection rule. The compressive strain in the GaN well region increases the energy separation between the so1+lh1 energy level and the hh1 energy level. Consequently, the compressive strain enhances the TE mode optical gain, and strongly depresses the TM mode optical gain. Even when the carrier density is as large as 10(19) cm(-3), there is no positive TM mode optical gain. The TE mode optical gain spectrum has a peak at around 3.26 eV. The transparency carrier density is 6.5 X 10(18) cm(-3), which is larger than that of GaAs quantum well. The compressive strain overall reduces the transparency carrier density. The J(rad) is 0.53 kA/cm(2) for the zero optical gain. The results obtained in this work will be useful in designing quantum well GaN laser diodes and detectors. (C) 1996 American Institute of Physics.
Resumo:
We experimentally study the effect of perpendicular electric field on the exciton binding energy using a specially designed step quantum well. From photoluminescence spectra at the temperature of 77 K, we have directly observed remarkable blueshift of the exciton peak due to the transition from spatially direct to spatially indirect excitons induced by electric field. (C) 1995 American Institute of Physics.
Resumo:
The hole effective-mass Hamiltonian for the semiconductors of wurtzite structure is established, and the effective-mass parameters of GaN and AlxGa1-xN are given. Besides the asymmetry in the z and x, y directions, the linear term of the momentum operator in the Hamiltonian is essential in determining the valence band structure, which is different from that of the zinc-blende structure. The binding energies of acceptor states are calculated by solving strictly the effective-mass equations. The binding energies of donor and acceptor for wurtzite GaN are 20 and 131, 97 meV, respectively, which are inconsistent with the recent experimental results. It is proposed that there are two kinds of acceptors in wurtzite GaN. One kind is the general acceptor such as C, substituting N, which satisfies the effective-mass theory, and the other includes Mg, Zn, Cd etc., the binding energy of which deviates from that given by the effective-mass theory. Experimentally, wurtzite GaN was grown by the MBE method, and the PL spectra were measured. Three main peaks are assigned to the DA transitions from the two kinds of acceptor. Some of the transitions were identified as coming from the cubic phase of GaN, which appears randomly within the predominantly hexagonal material. The binding energy of acceptor in ALN is about 239, 158 meV, that in AlxGa1-xN alloys (x approximate to 0.2) is 147, 111 meV, close to that in GaN. (C) 2000 Published by Elsevier Science S.A. All rights reserved.
Resumo:
Photocurrent (PC) spectra of ZnCdSe-ZnSe double multi-quantum wells are measured at different temperature. Its corresponding photocurrent derivative (PCD) spectra are obtained by computing, and the PCD spectra have greatly enhanced the sensitivity of the relative weak PC signals. The polarization dependence of the PC spectra shows that the transitions observed in the PC spectra are heavy-hole related, and the transition energy coincide well with the results obtained by envelope function approximation including strain. The temperature dependence of the photocurrent curves indicates that the thermal activation is the dominant transport mechanism of the carriers in our samples. The concept of saturation temperature region is introduced to explain why the PC spectra have different temperature dependence in the samples with different structure parameters. It is found to be very useful in designing photovoltaic devices.
Resumo:
The influence of interdot electronic coupling on photoluminescence (PL) spectra of self-assembled InAs/GaAs quantum dots (QDs) has been systematically investigated combining with the measurement of transmission electron microscopy. The experimentally observed fast red-shift of PL energy and an anomalous reduction of the linewidth with increasing temperature indicate that the QD ensemble can be regarded as a coupled system. The study of multilayer vertically coupled QD structures shows that a red-shift of PL peak energy and a reduction of PL linewidth are expected as the number of QD layers is increased. On the other hand, two layer QDs with different sizes have been grown according to the mechanism of a vertically correlated arrangement. However, only one PL peak related to the large QD ensemble has been observed due to the strong coupling in InAs pairs. A new possible mechanism to reduce the PL linewidth of QD ensemble is also discussed.
Resumo:
Irradiation efect in three carbon allotropes C60, diamond and highly oriented pyrolytic graphite (HOPG) induced by 170 keV B ions, mainly including the process of the damage creation, is investigated by means of Raman spectroscopy technique. The diferences on irradiation sensitivity and structural stability for C60, HOPG and diamond are compared. The analysis results indicate that C60 is the most sensitive for B ions irradiation,diamond is the second one and the structure of HOPG is the most stable under B ion irradiation. The damage cross sections ? of C60, diamond and HOPG deduced from the Raman spectra are 7.78×10−15 , 6.38×10−15 and1.31 × 10−15cm2, respectively.
Resumo:
Hard photons from neutron-proton bremsstrahlung in intermediate energy heavy-ion reactions are examined as a potential probe of the nuclear symmetry energy within a transport model. Effects of the symmetry energy on the yields and spectra of hard photons are found to be generally smaller than those due to the currently existing uncertainties of both the in-medium nucleon-nucleon cross sections and the photon production probability in the elementary process pn -> pn gamma. Very interestingly, nevertheless, the ratio of hard photon spectra R-1/2(gamma) from two reactions using isotopes of the same element is not only approximately independent of these uncertainties but also quite sensitive to the symmetry energy. For the head-on reactions of Sn-132 + Sn-124 and Sn-112 + Sn-112 at E-beam/A = 50 MeV, for example, the R-1/2(gamma) displays a rise up to 15% when the symmetry energy is reduced by about 20% at rho = 1.3 rho(0) which is the maximum density reached in these reactions. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We study the Hawking radiation of a (4+n)-dimensional Schwarzschild black hole imbedded in space-time with a positive cosmological constant. The greybody and energy emission rates of scalars, fermions, bosons, and gravitons are calculated in the full range of energy. Valuable information on the dimensions and curvature of space-time is revealed. Furthermore, we investigate the entropy radiated and lost by black holes. We find their ratio near 1 in favor of the Bekenstein's conjecture.
Resumo:
L-shell X-ray spectra of Mo surface induced by Xe25+ and Xe29+ were measured. The X-ray intensity was obtained in the kinetic energy range of the incident ions from 350 to 600 keV. The relationship of X-ray intensity with kinetic energy of the projectile and its charge state were studied, and the simple explanation was given.
Resumo:
The X-ray spectra of Nb surface induced by Arq+ (q = 16,17) ions with the energy range from 10 to 20 keV/q were studied by the optical spectrum technology. The experimental results indicate that the multi-electron excitation occurred as a highly charged Ar16+ ion was neutralized below the metal surface. The K shell electron of Ar16+ was excited and then de-excited cascadly to emit K X-ray. The intensity of the X-ray emitted from K shell of the hollow Ar atom decreased with the increase of projectile kinetic energy. The intensity of the X-ray emitted from L shell of the target atom Nb increased with the increase of projectile kinetic energy. The X-ray yield of Ar17+ is three magnitude orders larger than that of Ar16+.
Resumo:
Amorphous SiO2 thin films with about 400-500 nm in thickness were thermally grown on single crystalline silicon. These SiO2/Si samples were firstly implanted at room temperature (RT) with 100 keV carbon ions to 2.0 x 10(17),5.0 X 10(17) or 1.2 x 10(18) ions/cm(2), then irradiated at RT by 853 MeV Pb ions to 5.0 x 10(11), 1.0 X.10(12) 2.0 x 10(12) or 5.0 x 10(12) ions/cm(2), respectively. The variation of photoluminescence (PL) properties of these samples was analyzed at RT using a fluorescent spectroscopy. The obtained results showed that Pb-ion irradiations led to significant changes of the PL properties of the carbon ion implanted SiO2 films. For examples, 5.0 x 10(12) Pb-ions/cm(2) irradiation produced huge blue and green light-emitters in 2.0 x 10(17) C-ions/cm(2) implanted samples, which resulted in the appearance of two intense PL peaks at about 2.64 and 2.19 eV. For 5.0 x 10(17) carbon-ions/cm(2) implanted samples, 2.0 x 10(12) Pb-ions/cm(2) irradiation could induce the formation of a strong and wide violet band at about 2.90 eV, whereas 5.0 x 10(12) Pb-ionS/cm(2) irradiation could,create double peaks of light emissions at about 2.23 and 2.83 eV. There is no observable PL peak in the 1.2 x 10(18) carbon-ions/cm(2) implanted samples whether it was irradiated with Pb ions or not. All these results implied that special light emitters could be achieved by using proper ion implantation and irradiation conditions, and it will be very useful for the synthesis of new type Of SiO2-based light-emission materials.