145 resultados para Direct ethanol fuel cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fuel of proton exchange membrane fuel cells (PEMFC) mostly comes from reformate containing CO. which will poison the fuel cell electrocatalyst. The effect of CO on the performance of PEMFC is studied in this paper. Several electrode structures are investigated for CO containing fuel. The experimental results show that thin-film catalyst electrode has higher specific catalyst activity and traditional electrode structure can stand for CO poisoning to some extent. A composite electrode structure is proposed for improving CO tolerance of PEMFCs. With the same catalyst loading. the new composite electrode has improved cell performance than traditional electrode with PtRu/C electrocatalyst for both pure hydrogen and CO/H-2. The EDX test of composite anode is also performed in this paper, the effective catalyst distribution is found in the composite anode. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Platinum utilization in the gas-diffusion catalyst layer and thin-film catalyst layer is investigated. The morphology of PTFE and Nafion in a simulated catalyst layer is examined by scanning electronmicroscopy (SEM) and transmission electron microscopy (TEM). The results show that the platinum utilization of the thin-film catalyst layer containing only Pt/C and Nafion is 45.4%. The low utilization is attributed to the fact that the electron conduction of many catalyst particles is impaired by some thick Nafion layers or clumps. For the gas-diffusion (E-TEK) electrode, the platinum utilization is mainly affected by the proton conduction provided by Nafion. The blocking effect of PTFE on the active sites is not serious. When the electrode is sufficiently impregnated with Nafion by an immersion method, the platinum utilization can reach 77.8%. Transmission electron micrographs reveal that although some thick Nafion layers and clumps are observed in the Pt/C + Nafion layer, the distribution of Nafion in the catalyst layer is basically uniform. The melted PTFE disperses in the catalyst layer very uniformly. No large PTFE clumps or wide net-like structure is observed. The reactant gas may have to diffuse evenly in the catalyst layer. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of PtRu nanocomposites supported on H2O2-oxidized multi-walled carbon nanotubes (MWCNTs) were synthesized via two chemical reduction methods - one used aqueous formaldehyde (HCHO method) and the other used ethylene glycol (EG method) as the reducing agents. The effects of the solvents (water and ethylene glycol) and the surface composition of the MWCNTs on the deposition and the dispersion of the metal particles were investigated using N-2 adsorption. TEM. ICP-AES. FTIR and TPD. The wetting heats of the MWCNTs in corresponding solvents were also measured. The characterizations suggest that combination of the surface chemistry of the MWCNTs with the solvents decides the deposition and the dispersion of the metal nanoparticles. These nanocomposites were evaluated as proton exchange membrane fuel cell anode catalyts for oxidation of 50 ppm CO contaminated hydrogen and compared with a commercial PtRu/C catalyst. The data reveal superior performances for the nanocomposites prepared by the EG method to those by the HCHO method and even to that for tile Commercial analogue. Structure performance relationship of the nanocomposites was also studied. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A five-layer catalyst coated membrane (CCM) based upon Nation 115 membrane for direct methanol fuel cell (DMFC) was designed and fabricated by introducing a modified Nafion layer between the membrane and the catalyst layer. The properties of the CCM were determined by SEM, cyclic voltammetry, impedance spectroscopy, ruinous test and I-V curves. The characterizations show that the modified Nation layers provide increased interface contact area and enhanced interaction between the membrane and the catalyst layer. As a result, higher Pt utilization, lower contact resistance and superior durability of membrane electrode assembly was achieved. A 75% Pt utilization efficiency was obtained by using the novel CCM structure, whereas the conventional structure gave 60% efficiency. All these features greatly contribute to the increase in DMFC performance. The DMFC with new CCM structure presented a maximum power density of 260 MW cm(-2), but the DMFC with conventional structure gave only 200 mW cm(-2) under the same operation condition. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel polytetrafluoroethylene (PTFE)-reinforced multilayer self-humidifying composite membrane is developed. The membrane is composed of Nafion-impregnated porous PTFE composite as the central layer and nanosized SiO2 supported Pt catalyst imbedded into Nafion as the two side layers. The proton exchange membrane (PEM) fuel cells employing the self-humidifying membrane (20 mu m thick) under dry H-2/O-2 gave a peak power density of 0.95 W/cm(2) and an open-circuit voltage of 1.032 V. The good membrane performance is attributed to hygroscopic Pt-SiO2 catalyst at the two side layers, which results in enhanced anode side self-humidification function and decreased cathode polarization. (c) 2005 The Electrochemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La0.8Sr0.2Mn1.1O3 (LSM1.1)-10 mol% Sc2O3-Stabilized ZrO2 co-doped with CeO2 (ScSZ) composite cathodes were investigated for anode-supported solid oxide fuel cells (SOFCs) with thin 8 mol% Y2O3-stabilized ZrO2 (YSZ) electrolyte. X-ray diffraction (XRD) results indicated that the ScSZ electrolytes displayed good chemical compatibility with the nonstoichiometric LSM1.1 against co-firing at 1300 degrees C. Increasing the CeO2 content in the ScSZ electrolytes dramatically suppressed the electrode polarization resistance, which may be related to the improved surface oxygen exchange or the enlarged active area of cathode. The 5Ce10ScZr was the best electrolyte for the composite cathodes, which caused a small ohmic resistance decrease and the reduced polarization resistance and brought about the highest cell performance. The cell performances at lower temperatures seemed to rely on the electrode polarization resistance more seriously, than the ohmic resistance. Compared with the cell impedance at higher temperatures, the higher the 5Ce10ScZr proportion in the composite cathodes, the smaller the increment of the charge transfer resistance at lower temperatures. The anode-supported SOFC with the LSM1.1-5Ce10ScZr (60:40) composite cathode achieved the maximum power densities of 0.82 W/cm(2) at 650 degrees C and 2.24 W/cm(2) at 800 degrees C, respectively. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

燃料电池以其高效、环境友好的发电方式,被誉为21世纪的能源技术。其中,直接甲醇燃料电池(DMFC)更以燃料甲醇来源丰富,价格低廉,储存、携带方便而成为近年的研究热点。目前DNDFC存在的一个主要问题是"甲醇透过",即甲醇从阳极穿过固体电解质膜进入到阴极,而阴极催化剂一般是Pt/C,因此在阴极会同时发生甲醇氧化和氧还原,严重降低了电池的库仑效率和电压效率。此夕卜甲醇及其氧化中间产物还会使P口C中毒。虽然试验了一些低甲醇透过率的电解质膜,但仍无法完全消除甲醇透过。因此研制对氧还原催化活性高而对甲醇氧化没有活性,即耐甲醇的氧还原电催化剂是一个十分重要的课题。本论文主要从催化剂的组成、热处理、制备方法和载体等方面进行了相关研究,此外,还开展了生物燃料电池阴极电催化剂的研究。具体结果如下:1.热处理对电催化剂性能的影响(1)首次研究了炭载铂(Pt/C)对氧还原和甲醇氧化的催化活性与热处理温度的关系。发现P"C的催化活性随热处理温度的升高而降低,其原因是热处理使R/C中Pt的结晶度提高、粒径变大、表面浓度降低。但是,热处理使PUC催化甲醇氧化活性的降低程度远大于催化氧还原活性的降低程度。该研究提供了一种有效改善P口C催化剂耐甲醇性能的简便方法。(2)研究了炭载四狡基酞著钻(CoPcTc/C)和炭载四苯基铁叶琳(FeTPP/C)对氧还原和甲醇氧化的催化活性与热处理温度的关系。发现800℃热处理的CoPcTc/C对氧还原的催化活性最高;XPS和XRD分析表明,其活性位主要为含CoN4结构的物质。FeTPP/C催化剂与CoPcTc/C类似,700℃热处理的对氧还原催化活性最高。二者对甲醇氧化都没有活性。(3)首次研究了炭载四苯基铁叶琳一铂(FeTPP-Pt/C)复合催化剂对氧还原和甲醇氧化的催化活性与热处理温度的关系。发现热处理使FeTPP-Pt/C对氧还原的催化活性提高,并且优于相应P灯C,这是因为复合催化剂对氧还原的催化活性来源于FeTPP和Pt两部分。另外,FeTPP-Pt/C对甲醇氧化的催化活性随热处理温度的升高而降低,降低幅度大于相应Pt/C,这是因为在复合催化剂中,FeTPP在Pt/C表面的分散会降低甲醇与R的接触。700℃热处理的FeTPP-Pt/C对氧还原的催化活性最高,并且耐甲醇能力很强,非常适合作为DMFC阴极电催化剂。(4)首次研究了FeTPP-TiO2/C复合催化剂对氧还原的催化活性与热处理温度的关系。发现70。℃热处理的FeTPP-TiO2/C对氧还原的催化活性最高,并且稳定性好;复合催化剂提高了氧还原的电子转移数。这是因为TIOZ能够将FeTPP催化氧还原过程中产生的H2O2及时分解为O2和H2O,再重新被FeTPP还原。TIOZ的加入有望改善过渡金属大环化合物催化剂的长程稳定性。此夕卜该复合催化剂对甲醇氧化没有活性。2.制备方法对电催化剂性能的影响(1)首次同时研究了Pt/C对氧还原和甲醇氧化的催化性能,讨论了影响Pt/C催化活性的主要因素。XRD、XPS和TEM分析表明,无定型Pt含量高的Pt/C对氧还原的催化活性较高,表面氧化物含量高的Pt/C对甲醇氧化的催化活性较高。为制备耐甲醇能力强、催化氧还原活性高的Pt/C催化剂提供了理论参考。(2)比较了平衡吸附法和强制沉积法制备的FeTPP-Pt/C催化剂的性能,发现前者对氧还原和甲醇氧化的催化活性都高于后者,这是因为由强制吸附法制备的复合催化剂,FeTPP将一部分Pt覆盖,使其无法发挥活性。3.活性炭载体对Pt/C电催化剂性能的影响利用多种分析手段,系统比较了VulcanXC-72炭和上海松木炭的物理、化学性质对Pt/C电催化剂性能的影响。发现孔径适当、电导率高、灰分和表面含氧基团较少的活性炭作载体时,制得的P口C催化剂的性能较好。为PEMFC中电催化剂载体的选择提供了一些理论依据。4.生物燃料电池阴极电催化剂的研究首次制备了炭载微过氧化物酶-11(MP-11/C)电催化剂,通过循环伏安法、线性扫描法和旋转圆盘电极技术研究发现,MP-11/C对O2还原具有较高的催化活性,并且稳定性好,为生物燃料电池的研制提供了一种较好的酶固定方法。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel carbon-supported palladium-rich Pd3Pt1/C catalyst prepared by a modified polyol process showed a better cell performance than Pt/C in direct methanol fuel cells, which may be attributed to palladium's inactivity to methanol electro-oxidation while exhibiting good performance to oxygen reduction reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An improved aqueous impregnation method was used to prepare 40 wt% Pt/C electrocatalysts. TEM analysis of the samples showed that the Pt particles impregnated for a short time have a very narrow size distribution in the range of 1-4 nm with an average size of 2.6 nm. UV-vis spectroscopy measurements verified that the redox reaction between PtCl62- and formaldehyde took place with a slow rate at ambient temperature via a two-step reaction path, where PtCl42- serves as an intermediate. The use of the short-time-impregnated 40 wt% Pt/C as cathode electrocatalysts in direct methanol fuel cells yields better performance than that of commercial 40 wt% Pt/C electrocatalyst. Experimental evidence provides clues for the fundamental understanding of elementary steps of the redox reactions, which helps in guiding the design and preparation of highly dispersed Pt catalyst for fuel cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A carbon-supported palladium catalyst modified by non-metal phosphorus(PdP/C) has been developed as an oxygen reduction catalyst for direct methanol fuel cells.The PdP/C catalyst was prepared by the sodium hypophosphite reduction method. The as-prepared Pd nanoparticles have a narrow size distribution with an average diameter of 2 nm. Energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) results indicate that P enters into the crystal lattice of Pd and forms an alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pd nanoparticles supported on WO3/C hybrid material have been developed as the catalyst for the oxygen reduction reaction (ORR) in direct methanol fuel cells. The resultant Pd-WO3/C catalyst has an ORR activity comparable to the commercial Pt/C catalyst and a higher activity than the Pd/C catalyst prepared with the same method. Based on the physical and electrochemical characterizations, the improvement in the catalytic performance may be attributed to the small particle sizes and uniform dispersion of Pd on the WO3/C, the strong interaction between Pd and WO3 and the formation of hydrogen tungsten bronze which effectively promote the direct 4-electron pathway of the ORR at Pd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of new composite proton exchange membranes for direct methanol fuel cells (DMFCs) based on poly (vinyl alcohol) (PVA), phosphotungstic acid (PWA) and silica were prepared. The highest proton conductivity (a) of these membranes is 0.017 S/cm at ambient temperature. The methanol permeability (D) of these composite membranes ranges from 10(-7) to 10(-8) cm(2)/S. From the ratios of sigma/D, it was found that the optimal weight composition of the PVA/PWA/SiO2 membrane is PVA/PWA/SiO2=0.40:0.40:0.20 wt. Infrared (IR) spectrographic measurements indicate that the Keggin structure characteristics of the PW12O403- anion is present in the composite membranes. Cyclic voltammetry shows that the electrochemical stability window of the complex membrane is from -0.5 to 1.5 V vs. Ag/AgCl electrode. The results of differential scanning calorimetry (DSC) show that silica can improve the thermal stability of the complexes and the single Tg of the membrane indicates that the membrane is homogeneous. The complexes behave as X-ray amorphous.