93 resultados para Dilute bosonic atoms
Resumo:
Effects of chain flexibility on the conformation of homopolymers in good solvents have been investigated by Monte Carlo simulation. Bond angle constraint coupled with persistence length of polymer chains has been introduced in the modified eight-site bond fluctuation simulation model. The study about the effects of chain flexibility on polymer sizes reveals that the orientation of polymer chains under confinement is driven by the loss of conformation entropy. The conformation of polymer chains undergoing a gradual change from spherical iso-diametric ellipsoid to rodlike iso-diametric ellipsoid with the decrease of polymer chain flexibility in a wide region has been clearly illustrated from several aspects. Furthermore, a comparison of the freely jointed chain (FJC) model and the wormlike chain (WLC) model has also been made to describe the polymer sizes in terms of chain flexibility and quasi-quantitative boundary toward the suitability of the models.
Resumo:
The electron affinities and ionization potentials of 4d and 5d transition metal atoms were studied by CCSD(T), MP2 and density functional methods. The calculated results indicate that density functional method B3LYP has the best overall performance in predicting both electron affinity and ionization potential. SVWN gives largest IP and EA for 4d and 5d atoms. For the two basis sets used in this study, LANL2DZ and SDD, the performance of B3LYP/SDD combination is better than B3LYP/LANL2DZ, in particular for electron affinity calculation.
Resumo:
Density functional theory (DFT) electronic structure calculations were carried out to predict the structures and the absorption and emission spectra for porphyrin and a series of carbaporphyrins-carbaporphyrin, adj-dicarbaporphyrin, opp-dicarbaporphyrin, tricarbaporphyrin and tetracarbaporphyrin. The ground- and excited-state geometries were optimized at the B3LYP/6-31g(d) and CIS/6-31g(d) level, respectively. The optimized ground-state geometry and absorption spectra of porphyrin, calculated by DFT and time-dependent DFT (TDDFT), are comparable with the available experimental values. Based on the optimized excited-state geometries obtained by CIS/6-31g(d) method, the emission properties are calculated using TDDFT method at the B3LYP/6-31g(d) level. The effects of the substitution of nitrogen atoms with carbon atoms at the center positions of porphyrin are discussed. The results indicate that the two-pyrrole nitrogens are important to the chemical and physical properties for porphyrin.
Resumo:
A perfect single crystal of nylon-2,14 was prepared from 0.02% (w/v) 1,4-butanediol solution by a "self-seeding" technique and isothermal crystallization at 120 and 145 degreesC. The morphology and structure features were examined by transmission electron microscopy with both image and diffraction modes, atomic force microscopy, and wide-angle X-ray diffraction (WAXD). The nylon-2,14 single crystal grown from 1,4-butanediol at 145 degreesC inhabited a lathlike shape with a lamellar thickness of about 9 nm. Electron diffraction and WAXD data indicated that nylon-2,14 crystallized in a triclinic system with lattice dimensions a = 0.49 nm, b = 0.51 nm, c = 2.23 nm, alpha = 60.4degrees, beta = 77degrees, and gamma = 59degrees. The crystal structure is different from that of nylon-6,6 but similar to that of other members of nylon-2Y.
Resumo:
A new two-dimensional hybrid zinc phosphate with electro-neutral open-framework has been hydrothermally synthesized by using imidazole as a structure-directing agent, whose structure is characterized with 3-, 4-, 5, and 12-ring layers and coordination bonds between imidazole groups and zinc atoms, resulting in primary building units of ZnO2N2 and ZnO3N.
Resumo:
The crystallization, morphology, and crystalline structure of dilute solid solutions of tetrahydrofuran-methyl methacrylate diblock copolymer (PTHF-b-PMMA) in poly(ethylene oxide) (PEO) and PTHF have been studied with differential scanning calorimetry (DSC), X-ray, and optical microscopy. This study provides a new insight into the crystallization behavior of block copolymers. For the dilute PTHF-b-PMMA/PEO system containing only 2 to 7 wt % of PTHF content, crystallization of the PTHF micellar core was detected both on cooling and on heating. Compared the crystallization of the PTHF in the dilute solutions with that in the pure copolymer, it was found that the crystallizability of the PTHF micellar core in the solution is much greater than that of the dispersed PTHF microdomain in the pure copolymer. The stronger crystallizability in the solution was presumably due to a softened PMMA corona formed in the solution of the copolymer with PEG. However, the "soft" micelles formed in the solution (meaning that the glass transition temperatures (T-g) of the micelle is lower than the T-m of the matrix phase) showed almost no effects on the spherulitic morphology of the PEO component, compared with that of the pure PEO sample. In contrast, significant effects of the micelles with a "hard" PMMA core (meaning that the T-g of the core is higher than the T-m of the PTHF homopolymer) on the nucleation, crystalline structure, and spherulitic morphology were observed for the dilute PTHF-b-PMMA/PTHF system. (C) 1998 John Wiley & Sons, Inc.
Resumo:
Spherulites and lamellar single crystals of poly(aryl ether ketone ketone) containing isophthaloyl moieties (PEKK(I)) were obtained from dilute alpha-chloronaphthalene solution. The morphology and structure of the spherulites and single crystals were studied by electron microscopy and electron diffraction. The spherulites were found to consist of elongated lamellar branches that grow with the b crystallographic axis in the radial direction. Single crystals possess a similar habit, with b parallel to the long axis, a transverse, and c perpendicular to the lamellae plane. High-resolution images of the PEKK(I) crystals which show the perfection of and defects in the crystals, were obtained, and many defects or dislocations a,ere observed. (C) 1997 Elsevier Science Ltd.
Resumo:
C-13 and H-1 relaxation times were measured as a function of temperature in two magnetic fields for dilute solutions of phenolphthalein poly(ether sulfone) (PES-C) in deuterated chloroform. The spin-lattice relaxation times were interpreted in terms of segmental motion characterized by the sharp cutoff model of Jones and Stockmayer (J. S. model). The phenyl group rotation is treated as a stochastic diffusion by the J. S. model. The restricted butterfly motion of the phenyl group attached to the cardo ring in PES-C is mentioned but is not discussed in detail in this work. Correlation times for the segmental motion are in the picosecond range which indicates the high flexibility of PES-C chains. The correlation time for the phenyl group internal rotation is similar to that of the segmental motion. The temperature dependence of these motions is weak. The apparent activation energy of the motions considered is less than 10 kJ/mol. The simulating results for PES are also reasonable considering the differences in structure compared with PES-C. The correlation times and the apparent activation energy obtained using the J. S. model for the main chain motion of PES-C are the same as those obtained using the damped orientational diffusion model and the conformational jump model.
Resumo:
The hetero atom substituted aluminophosphate molecular sieves Me-VPI-5(Me = Mgt Ti, Sn, Si) were synthesized hydrothermally. Rare earth ions are originally doped into these microporous materials by aqueous solution ion exchange procedures. The phase transitions of the microporous materials are investigated by high-temperature and high-pressure experimental techniques. The influence of the phase transitions on the rare earth ions' spectral structures is discussed, With the increase of temperature, Eu(II)Mg-VPI-5 is converted into Eu(II)Mg-AIPO(4)-8, then into tridymite phase. The pressure has a notable influence on Eu(II) ion's spectral structures. The spectral structures have changed regularly with the increase of pressure.
Resumo:
Effects of the potential of anodic oxidation and of potential cycling on the surface structure of a highly oriented pyrolytic graphite (HOPG) electrode were observed by in situ electrochemical scanning tunnelling microscopy (ECSTM) in dilute H2SO4 solution with atomic resolution. With potential cycling between -0.1 V and 1.8 V vs. Ag/AgCl (sat. KCI), some atoms on the top layer of HOPG protrude out of the base plane, and the graphite lattice of these protrusions is still intact but is strained and expanded. With further potential cycling, some protrusions coalesced and some grew larger, and an anomalous superperiodic feature was observed (spacing 90 Angstrom with a rotation 30 degrees relative to atomic corrugations) which superimposed on the atomic corrugation of HOPG. On the topmost of these protrusions, some atoms form oxides and others are still resolved by the ECSTM image. With potential cycling between -0.1 V and + 2.0 V vs. Ag/AgCl (sat. KCl), damage to freshly cleaved HOPG surface is more serious and fast, some ridges are observed, the atomic structure of the HOPG surface is partially and then completely damaged due to the formation of oxide. We also found that anodic oxidation occurred nonuniformly on the surface of HOPG near defects during potential cycling.
Resumo:
Using a low angle laser light scattering photometer, the second virial coefficients (A2) of both cyclic and linear polystyrene were determined in cyclohexane, toluene and methyl ethyl ketone (MEK) solutions. From the data obtained in cyclohexane solution the theta-temperature of cyclic polystyrene was determined to be 30-degrees-C. In toluene solution A2 of cyclic polystyrene is smaller than that of linear polystyrene with the same molecular weight, but in MEK the values are similar.
Resumo:
The effect of micelle on crystallization behaviour of dilute poly(methyl methacrylate-b-tetrahydrofuran) diblock copolymer/tetrahydrofuran homopolymer, dilute poly (ethylene-b-styrene-b-ethylene) triblock copolymer/ethylene homopolymer solutions has been studied. The results show that with the structural teansitions from spherical to nonspherical micelle in the blends, great changes in the nucleation and spherulite morphologies take place.