67 resultados para Design and constructions
Resumo:
介绍了一个峰保持电路。该电路适用于silicon strip,Si(Li),CdZn Te and CsI等探测器,实现采样-保持功能。已成功进行了基于CMOSFET的采样-保持电路的设计和仿真,通过使用Proteus的PSPICE仿真器和BSIMV3.3模型参数完成了电路性能的仿真。同时,实现了采样时间可在60ns到4.44s范围内进行选择,该电路具有较好的线性。
Resumo:
Charge stripping is employed to produce multi-charged ions for injecting the cooling storage ring After penetrating through the carbon foil, the widened distribution of ion charge states poses a limit to the ion injection Therefore, the carbon foil plays a key role in the charge snipping injection In this paper, foul strippers for Heavy Ion Research Facility at Lanzhou (HIRFL) and Cooling Sun age Ring (CSR) are introduced The charge state distribution of the stripped ions is measured and the stripping efficiency of the foils is investigated The experimental results are consistent with the theoretical values
Resumo:
A 7 Tesla superconducting magnet with a clear warm bore of 156 mm in diameter has been developed for Lanzhou Penning Trap at the Institute of Modern Physics for high precision mass measurement. The magnet is comprised of 9 solenoid coils and operates in persistent mode with a total energy of 2.3 MJ. Due to the considerable amount of energy stored during persistent mode operation, the quench protection system is very important when designing and operating the magnet. A passive protection system based on a subdivided scheme is adopted to protect the superconducting magnet from damage caused by quenching. Cold diodes and resistors are put across the subdivision to reduce both the voltage and temperature hot spots. Computational simulations have been carried in Opera-quench. The designed quench protection circuit and the finite element method model for quench simulations are described; the time changing of temperature, voltage and current decay during the quench process is also analysed.
Resumo:
An optimization method based on uniform design in conjunction with genetic algorithm is described. According to the proposed method, the uniform design technique was applied to the design of starting experiments, which can reduce the number of experiments compared with traditional simultaneous methods, such as simplex. And genetic algorithm was used in optimization procedure, which can improve the rapidity of optimal procedure. The hierarchical chromatographic response function was modified to evaluate the separation equality of a chromatogram. An iterative procedure was adopted to search for the optimal condition to improve the accuracy of predicted retention and the quality of the chromatogram. The optimization procedure was tested in optimization of the chromatographic separation of 11 alkaloids in reversed-phase ion pair chromatography and satisfactory optimal result was obtained. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The deliberate tailoring of hierarchical flowerlike gold microstructure (HFGMs) at the ultrathin level is an ongoing challenge and could introduce opportunities for new fabrication and application in many fields. In this paper. a templateless, surfactantless, electrochemical strategy for fabrication of ultrathin platinum-group metal coated HFGMs is proposed. HFGMs were prepared by simple electrodeposition on an indium tin oxide (ITO) substrate.
Resumo:
By using the bifunctional ligand, 8-hydroxyquinoline-functionalized organosilane (Q-Si), the new mesoporous material Q-MCM-41 covalently bonded with 8-hydroxyquinoline was synthesized. Through the ligand exchange reaction, the new near-infrared (NIR) luminescent mesoporous LnQ(3)-MCM-41 (Ln = Er, Nd, Yb) materials were prepared by linking the lanthanide quinolinate complexes to the ordered mesoporous Q-MCM-41 material. The LnQ(3)-MCM-41 materials were characterized by powder X-ray diffraction and N-2 adsorption/desorption, and they all show the characteristic mesoporous structure of MCM-41 with highly uniform pore size distributions.