230 resultados para CHA-252
Resumo:
The present study monitored 10-year-old fish and piscivorous birds from sites contaminated for many Stars. The data reflected the results of actual, long-term environmental exposures, The results demonstrate that different tissues of fish have quite different concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F), The concentration order of PCDD/F within fish is liver congruent to egg congruent to intestines kidney congruent to hearts gill congruent to bladders > muscle > brain. The concentration order of PCDD/F within piscivorous birds was livers egg congruent to hearts muscle congruent to stomachs brain, The results obtained also demonstrate that the accumulation patterns of piscivorous birds and fish are quite different. The tissues of fish and piscivorous birds have different capacities for bioaccumulation and biotransformation of PCDD/F; variable proportions of TEQs were also found throughout their bodies. In fish, toxic equivalency quotient (TEQ): PCDD/F ratios in various tissues ranged from 0.01 to 0.07, whereas in birds the ratios ranged from 0.07 to 0.43. If the concentrations are normalized with lipid content, the results vary less. The effect of different lipid properties is obvious in the case of brain tissue, which is richer in phospholipids. (C) 2000 Academic Press.
Resumo:
We have grown InAs self-assembled islands on vicinal GaAs( 001) substrates. Atomic force microscopy and photoluminescence studies show that the islands have a clear bimodal size distribution. While most of the small islands whose growth is limited by the width of one multi-atomic step have compact symmetric shapes, a large fraction of the large islands limited by the width of one step plus one terrace have asymmetric shapes which are elongated along the multi-atomic step lines. These results can be attributed to the shape-related energy of the islands at different states of their growth. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
A ZnO layer was grown by metalorganic chemical vapor deposition (MOCVD) on a sapphire (0 0 0 1) substrate. The perpendicular and parallel elastic strain of the ZnO epilayer, e(perpendicular to) = 0.19%, e(parallel to) = -0.29%, respectively, were derived by using the combination of Rutherford backscattering (RBS)/channeling and X-ray diffraction (XRD). The ratio vertical bar e(parallel to)/ e(perpendicular to)vertical bar = 1.5 indicates that ZnO layer is much stiffer in the a-axis direction than in the c-axis direction. By using RBS/C, the depth dependent elastic strain was deduced. The strain is higher at the depth close to the interface and decreases towards the surface. The negative tetragonal distortion was explained by considering the lattice mismatch and thermal mismatch in ZnO thin film. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
By employing non-equilibrium Green's function method, the mesoscopic Fano effect modulated by Rashba spin-orbit (SO) coupling and external magnetic field has been elucidated for electron transport through a hybrid system composed of a quantum dot (QD) and an Aharonov-Bohm (AB) ring. The results show that the orientation of the Fano line shape is modulated by the Rashba spin-orbit interaction k(R)L variation, which reveals that the Fano parameter q will be extended to a complex number, although the system maintains time-reversal symmetry (TRS) under the Rashba SO interaction. Furthermore, it is shown that the modulation of the external magnetic field, which is applied not only inside the frame, but also on the QD, leads to the Fano resonance split due to Zeeman effect, which indicates that the hybrid is an ideal candidate for the spin readout device. (C) 2007 Elsevier B.V All rights reserved.
Resumo:
In practical situations, the causes of image blurring are often undiscovered or difficult to get known. However, traditional methods usually assume the knowledge of the blur has been known prior to the restoring process, which are not practicable for blind image restoration. A new method proposed in this paper aims exactly at blind image restoration. The restoration process is transformed into a problem of point distribution analysis in high-dimensional space. Experiments have proved that the restoration could be achieved using this method without re-knowledge of the image blur. In addition, the algorithm guarantees to be convergent and has simple computation.
Resumo:
The diluted magnetic semiconductors (DMSs) were achieved by the ion implantation. Fe+ ions (250 keV) were implanted into n-type GaN at room temperature with doses ranging from 8 X 10(15) cm(-2) to 8 X 10(16) cm(-2) and subsequently rapidly annealed at 800 degrees C for 5 m in N-2 ambient. PIXE was employed to determine the Fe-implanted content. The magnetic property was measured by the Quantum Design MPMS SQUID magnetometer. No secondary phases or clusters are detected within the sensitivity of XRD. Apparent ferromagnetic hysteresis loops measured at 10 K were presented. The relationships between the Fe-implanted content and the ferromagnetic property are discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The microstructural and optical analysis of Si layers emitting blue luminescence at about 431 nm is reported. These structures have been synthesized by C+ ion implantation and high-temperature annealing in hydrogen atmosphere and electrochemical etching sequentially. With the increasing etching time, the intensity of the blue peak increases at first, decreases then and is substituted by a new red peak at 716 nm at last, which shows characteristics of the emission of porous silicon. C=O compounds are induced during C+ implantation and nanometer silicon with embedded structure is formed during annealing, which contributes to the blue emission. The possible mechanism of photoluminescence is presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The chemical properties of AlxGa1-xN surfaces exposed to air for different time periods are investigated by atomic force microscopy (AFM), photoluminescence (PL) measurement and X-ray photoelectron spectroscopy (XPS). PL and AFM results show that AlxGa1-xN samples exhibit different surface characteristics for different air-exposure times and Al contents. The XPS spectra of the Al 2p and Ga 2p core levels indicate that the peaks shifted slightly, from an Al-N to an Al-O bond and from a Ga-N to a Ga-O bond. All of these results show that the epilayer surface contains a large amount of Ga and Al oxides. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The influence of GaAS(1 0 0)2 degrees substrate misorientation on the formation and optical properties of InAs quantum dots (QDs) has been studied in compare with dots on exact GaAs(1 0 0) substrates. It is shown that, while QDs on exact substrates have only one dominant size, dots on misoriented substrates are formed in lines with a clear bimodal size distribution. Room temperature photoluminescence measurements show that QDs on misoriented substrates have narrower FWHM, longer emission wavelength and much larger PL intensity relative to those of dots on exact substrates. However, our rapid thermal annealing (RTA) experiments indicate that annealing shows a stronger effect on dots with misoriented substrates by greatly accelerating the degradation of material quality. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
A new structure of GaAs photocathode was introduced. The Be-doping concentration is variable in the new structure compared with the constant concentration of Be in the normal photocathode. Negative electron affinity GaAs photocathodes were fabricated by alternate input of Cs and O. The spectral response results measured by the on-line spectral response measurement system show that the integrated photosensitivity of the photocathodes with the new structure is enhanced by at least 50% as compared to those with the monolayer structure. Accordingly, two main factors leading to the enhanced photosensitivity of the photocathodes were discussed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Both cracked and crack-free GaN/Al0.55Ga0.45N multiple quantum wells (MQWs) grown on GaN template by metalorganic chemical vapor deposition have been studied by triple-axis X-ray diffraction, grazing-incidence X-ray reflectivity, atomic force microscope, photoluminescence spectroscopy and low-energy positron annihilation spectroscopy. The experimental results show that cracks generation not only deteriorates the surface morphology, but also leads to a period dispersion and roughens the interfaces of MQWs. The mean density of dislocations in MQWs, determined from the average full-width at half-maximum of to-scan of each satellite peak, has been significantly enhanced by the cracks generation. Furthermore, the measurement of annihilation-line Doppler broadening reveals a higher concentration of negatively charged vacancies in the cracked MQWs. The combination of these vacancies and the high density of edge dislocations are assumed to contribute to the highly enhanced yellow luminescence in the cracked sample. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Radio frequency magnetron sputtering/post-carbonized-reaction technique was adopted to prepare good-quality GaN films on Al2O3(0 0 0 1) substrates. The sputtered Ga2O3 film doped with carbon was used as the precursor for GaN growth. X-ray diffraction (XRD) pattern reveals that the film consists of hexagonal wurtzite GaN. X-ray photoelectron spectroscopy (XPS) shows that no oxygen can be detected. Electrical and room-temperature photoluminescence measurements show that good-quality polycrystalline GaN films were successfully grown on Al2O3(0 0 0 1) substrates. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Selective area growth (SAG) of GaN on SiO2 stripe-patterned GaN/GaAs(001) substrates was carried out by metalorganic vapor-phase epitaxy. The SAG samples were investigated by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). SEM observations showed that the morphology of SAG GaN is strongly dependent on the window stripe orientation and slightly affected by the orientation relationship between the window stripes and the gas flow. The (I 1 1)B sidewalls formed on the SAG GaN stripes are found to be stable. XRD measurements indicated the full-widths at half-maximum (FWHMs) of cubic GaN (0 0 2) rocking curves are reduced after SAG. The measured FWHMs with omega-axis parallel to [1(1) over bar 0] are always larger than the FWHM values obtained with omega-axis parallel to [I 10], regardless of the orientation relationship between the w-axis and the GaN stripes. (C) 2003 Elsevier Science B.V. All rights reserved.
Structure characteristics of InGaN quantum dots fabricated by passivation and low temperature method
Resumo:
Passivation and low temperature method was carried out to grow InGaN/GaN quantum dots (QDs). Atomic force microscope observations were performed to investigate the evolution of the surface morphology of the InGaN QDs superlattices with increasing the superlattices layer number. The result shows that the size of the QDs increases with increasing superlattices layer number. The QDs height and diameter increase from 18 and 50 run for the monolayer InGaN QDs to 37 and 80 urn for the four-stacked InGaN QDs layers, respectively. This result is considered to be due to the stress field from the sub-layer dots. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A series of systematic experiments on the growth of high quality GaNAs strained layers on GaAs (001) substrate have been carried out by using DC active Nz plasma, assisted molecular beam epitaxy. The samples of GaNAs between 3 and 200 nm thick were evaluated by double crystal X-ray diffraction (XRD) and photoluminescence (PL) measurements. PL and XRD measurements for these samples are in good agreement. Some material growth and structure parameters affecting the properties of GaNAs/GaAs heterostructure were studied; they were: (1) growth temperature of GaNAs epilayer; (2) electrical current of active N-2 plasma; (3) Nz flow rate; (4) GaNAs growth rate; (5) the thickness of GaNAs strained layer. XRD and PL measurements showed that superlattice with distinct satellite peaks up to two orders and quantum well structure with intensity at 22 meV Fourier transform infrared spectroscopy (FWHM) can be achieved in molecular beam epitaxy (MBE) system. (C) 2000 Published by Elsevier Science S.A. All rights reserved.