108 resultados para Blue-green algae


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A closed aquatic ecosystem (CAES) was developed to stud), the effects of microgravity on the function of closed ecosystems aboard the Chinese retrieved satellite and on the spacecraft SHENZHOU-II. These systems housed a small freshwater snail (Bulinus australianus) and an autotrophic green algae (Chlorella pyrenoidosa). The results of the test on the satellite were that the concentration of algae changed little, but that the snails died during the experiments. We then sought to optimize the function of the control system, the cultural conditions and the data acquisition system and carried out an experiment on the spacecraft SHENZHOU-II. Using various sensors to monitor the CAES, real-time data regarding the operation of the CAES in microgravity was acquired. In addition, all on-board Ig centrifuge was included to identify gravity-related factors. It was found that microgravity is the major factor affecting the operation of the CAES in space. The change in biomass of the primary producer during each day in microgravity was larger than that of the control groups. The mean biomass concentration per day in the microgravity group decreased, but that of the control groups increased for several days and then leveled off. Space effects on the biomass of a primary producer may be a result of microgravity effects leading to increasing metabolic rates of the consumer combined with decreases in photosynthesis. (c) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To study the impact of solar UV radiation (UVR) (280 to 400 nm) on the filamentous cyanobacterium Arthrospira (Spirulina) platensis, we examined the morphological changes and photosynthetic performance using an indoor-grown strain (which had not been exposed to sunlight for decades) and an outdoor-grown strain (which had been grown under sunlight for decades) while they were cultured with three solar radiation treatments: PAB (photosynthetically active radiation [PAR] plus UVR; 280 to 700 nm), PA (PAR plus UV-A; 320 to 700 nm), and P (PAR only; 400 to 700 nm). Solar UVR broke the spiral filaments of A. platensis exposed to full solar radiation in short-term low-cell-density cultures. This breakage was observed after 2 h for the indoor strain but after 4 to 6 h for the outdoor strain. Filament breakage also occurred in the cultures exposed to PAR alone; however, the extent of breakage was less than that observed for filaments exposed to full solar radiation. The spiral filaments broke and compressed when high-cell-density cultures were exposed to full solar radiation during long-term experiments. When UV-B was screened off, the filaments initially broke, but they elongated and became loosely arranged later (i.e., there were fewer spirals per unit of filament length). When UVR was filtered out, the spiral structure hardly broke or became looser. Photosynthetic 0, evolution in the presence of UVR was significantly suppressed in the indoor strain compared to the outdoor strain. UVR-induced inhibition increased with exposure time, and it was significantly lower in the outdoor strain. The concentration of UV-absorbing compounds was low in both strains, and there was no significant change in the amount regardless of the radiation treatment, suggesting that these compounds were not effectively used as protection against solar UVR. Self-shading, on the other hand, produced by compression of the spirals over adaptive time scales, seems to play an important role in protecting this species against deleterious UVR. Our findings suggest that the increase in UV-B irradiance due to ozone depletion not only might affect photosynthesis but also might alter the morphological development of filamentous cyanobacteria during acclimation or over adaptive time scales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The freshwater, bloom-forming cyanobacterium (blue-green alga) Microcystis aeruginosa produces a peptide hepatotoxin, which causes the damage of animal liver. Recently, toxic Microcystis blooms frequently occur in the eutrophic Dianchi Lake (300 km(2) and located in the South-Westem of China). Microcystin-LR from Microcystis in Dianchi was isolated and purified by high performance liquid chromatography (HPLC) and its toxicity to mouse and fish liver was studied (Li et al., 2001). In this study, six biochemical parameters (reactive oxygen species, glutathione, superoxide dismutase, catalase, glutathione peroxide and glutathione S-transferase) were determined in common carp hepatocytes when the cells were exposed to 10 mug microcystin-LR per litre. The results showed that reactive oxygen species (ROS) contents increased by more than one-time compared with the control after 6 h exposure to the toxin. In contrast, glutathione (GSH) levels in the hepatocytes exposed to microcystin-LR decreased by 47% compared with the control. The activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxide (GSH-Px) increased significantly after 6 h exposure to microcystin-LR, but glutathione S-transferase (GST) activity showed no difference from the control. These results suggested that the toxicity of microcystin-LR caused the increase of ROS contents and the depletion of GSH in hepatocytes exposed to the toxin and these changes led to oxidant shock in hepatocytes. Increases of SOD, CAT and GSH-Px activities revealed that these three kinds of antioxidant enzymes might play important roles in eliminating the excessive ROS. This paper also examined the possible toxicity mechanism of microcystin-LR on the fish hepatocytes and the results were similar to those with mouse hepatocytes. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microcystis aeruginosa Kutz. 7820 was cultured at 350 and 700 muL.L-1 CO2 to assess the impacts of doubled atmospheric CO2 concentration on this bloom-forming cyanobacterium. Doubling Of CO2 concentration in the airflow enhanced its growth by 52%-77%, with pH values decreased and dissolved inorganic carbon (DIC) increased in the medium. Photosynthetic efficiencies and dark respiratory rates expressed per unit chl a tended to increase with the doubling of CO2. However, saturating irradiances for photosynthesis and light-saturated photosynthetic rates normalized to cell number tended to decrease with the increase of DIC in the medium. Doubling of CO2 concentration in the airflow had less effect on DIC-saturated photosynthetic rates and apparent photosynthetic affinities for DIC. In the exponential phase, CO2 and HCO3- levels in the medium were higher than those required to saturate photosynthesis. Cultures with surface aeration were DIC limited in the stationary phase. The rate of CO2 dissolution into the liquid increased proportionally when CO2 in air was raised from 350 to 700 muL.L-1, thus increasing the availability of DIC in the medium and enhancing the rate of photosynthesis. Doubled CO2 could enhance CO2 dissolution, lower pH values, and influence the ionization fractions of various DIC species even when the photosynthesis was not DIC limited. Consequently, HCO3- concentrations in cultures were significantly higher than in controls, and the photosynthetic energy cost for the operation of CO2 concentrating mechanism might decrease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diurnal photosynthesis of Nostoc flagelliforme was investigated at varied levels of CO2 concentrations and desiccation in order to estimate the effects of enriched CO2 and watering on its daily production. Photosynthetic activity was closely correlated with the desiccated status of the algal mats, increased immediately after watering, reached a maximum at moderate water loss, and then declined with further desiccation. Increased CO2 concentration enhanced the diurnal photosynthesis and raised the daily production. Watering twice per day enhanced the daily production due to prolonged period of active photosynthesis. The values of daily net production were 1321280 mumol CO2 g (d. wt)(-1) d(-1), corresponding to about 0.6-6.1% daily increase in dry weight. High-CO2-grown mats required higher levels of photon flux density to saturate the alga's photosynthesis in air. Air-grown mats showed higher photosynthetic affinity for CO2 and higher levels of dark respiration compared with high-CO2-grown samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The photosynthetic characteristics of the terrestrial cyanobacterium, Nostoc flagelliforme, after complete recovery by rewetting, was investigated to see whether it could use bicarbonate as the external inorganic carbon source when submerged. The photosynthesis-pH relationship and high pH compensation point suggested that the terrestrial alga could use bicarbonate to photosynthesize when submerged. The photosynthetic oxygen evolution rates were significantly inhibited in Na+-free and Na+ + Li+ media but were not affected by the absence of Cl-, implying that the bicarbonate uptake was associated with Na+/HCO3- symport rather than Cl-/HCO3- exchange system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The terrestrial blue-green alga (cyanobacterium), Nostoc flagelliforme, was cultured in air at various levels of CO2, light and watering to see their effects on its growth. The alga showed the highest relative growth rate at the conditions of high CO2 (1500 ppm), high light regime (219-414 mu mol m(-2)s(-1)) and twice daily watering, but the lowest rate at the conditions of low light (58-114 mu mol m(-2)s(-1)) and daily twice watering. Increased watering had little effect on growth rate at 350 ppm CO2, but increased by about 70% at 1500ppm CO2 under high light conditions. It was concluded that enriched CO2 could enhance the growth of N. flagelliforme when sufficient light and water was supplied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ecballocystopsis dichotomus sp. nov. is the third described species of Ecballocystopsis that grows on rock under water and epiphytically on the filaments of Cladophora and Mougeotia (green algae) collected in a small irrigation ditch in Chong-yang county, Hubei Province (East longitude 29 degrees 30', North latitude 114 degrees 10') and in Zhu-xi county, Hubei Province (East longitude 32 degrees 20', North latitude 109 degrees 45'). The new species differs from E. indica IYENGAR (1933) in having dichotomous branching and its smaller sized thallus; it differs from the second species, E. desikacharyi PRASAD (1985), in having looped filaments, dichotomous branching and smaller cells. Three patterns of cell divisions were observed in E. dichotomus sp. nov. (transverse, longitudinal and oblique). It may be that the new species is evolutionary a more advanced species based upon the structure of its thallus and the manner of spore formation. The systematic position of the genus, based on the comparative studies of the genus Ecballocystis BOHLIN with Cylindrocapsopsis IYENGAR, is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PS II photochemical efficiency (F-v/F-m) of Nostoc flagelliforme was examined after rewetting in order to investigate the light-dependency of its photosynthetic recovery. F-v/F-m was not detected in the dark, but was immediately recognized in the light. Different levels of light irradiation (4, 40 and 400 mu mol photon m(2) s(-1)) displayed different effects on the recovery process of photosynthesis. The intermediate level led to the best recovery of photochemical efficiency; the low light required longer and the high light inhibited the extent of the recovered efficiency. It was concluded that the photosynthetic recovery of N. flagelliforme is both light-dependent and influenced by photon flux density.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of wind speed on loss of water from N. flagelliforme colonies were investigated indoors in an attempt to assess its ecological significance in field. Wind enhanced the process of waterless; the half-time of desiccation at wind speeds of 2.0 and 3.4 m s(-1) was, respectively, shortened to one-third and one-fifth at 20 degrees C and, to one-sixth and one-eighth at 27 degrees C that of still air. Photosynthetic efficiency was not affected before the wet alga lost about 50% water.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The temperature dependence of the formation of nano-scale indium clusters in InAlGaN quaternary alloys, which are grown by metalorganic chemical vapour deposition on GaN/Si(111) epilayers, is investigated. Firm evidence is provided to support the existence of phase separation, or nano-scale In-rich clusters, by the combined results of high-resolution transmission electron microscopy (HRTEM), high-resolution x-ray diffraction (HRXRD) and micro-Raman spectra. The results of HRXRD and Raman spectra indicate that the degree of phase separation is strong and the number of In clusters in the InAlGaN layers on silicon substrate is higher at lower growth temperatures than that at higher growth temperatures, which limits the In and Al incorporated into the InAlGaN quaternary alloys. The detailed mechanism of luminescence in this system is studied by low temperature photoluminescence (LT-PL). We conclude that the ultraviolet (UV) emission observed in the quaternary InAlGaN alloys arises from the matrix of a random alloy, and the second emission peak in the blue-green region results from the nano-scale indium clusters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Undoped and Zinc-doped GaN films have been grown using TMGa, DEZn and Ammonia by MOVPE. The GaN blue-green LEDs of m-i-n structure have been fabricated. They can be operated at forward bias less than 5 volts. The EL peak wavelengths was from 455 nm to 504 nm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The magnetotransport properties of the two-dimensional (2D) electron gas confined in a modulation-doped Zn0.80Cd0.20Se/ZnS0.06Se0.94 single quantum well structure were studied at temperatures down to 0.35 K in magnetic fields up to 7.5 T. Well resolved 2D Shubnikovde Haas (SdH) oscillations were observed, although the conductivity of the sample in the as grown state was dominated by a bulk parallel conduction layer. After removing most of the parallel conduction layer by wet chemical etching the amplitude and number of SdH oscillations increased. From the temperature dependence of the amplitude the effective mass of the electrons was estimated as 0.17 m(0). Copyright (C) 1996 Published by Elsevier Science Ltd

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One-dimensional CaMoo(4):Ln(3+) (Ln = Eu, Tb, Dy) nanofibers have been prepared by a combination method of sol-gel and electrospinning process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and low voltage cathodoluminescence (CL) as well as kinetic decays were used to characterize the resulting samples. SEM and TEM analyses indicate that the obtained precursor fibers have a uniform size, and the as-formed CaMoO4:Ln(3+) nanofibers consist of nanoparticles. Under ultraviolet excitation, the CaMoO4 samples exhibit a blue-green emission band with a maximum at 500 nm originating from the MoO42- groups. Due to an efficient energy transfer from molybdate groups to dopants, CaMoO4:Ln(3+) phosphors show their strong characteristic emission under ultraviolet excitation and low-voltage electron beam excitation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

LaInO3: Sm3+, LaInO3: Pr3+ and LaInO3: Tb3+ phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction, field emission scanning electron microscopy, photoluminescence, and cathodoluminescence (CL) spectra were utilized to characterize the synthesized phosphors. XRD results reveal that the pure LaInO3 phase can also be obtained at 700 degrees C. FE-SEM images indicate that the LaInO3: Sm3+, LaInO3: Pr3+ and LaInO3: Tb3+ phosphors are composed of aggregated spherical particles with sizes around 80-120 nm. Under the excitation of ultraviolet light and low voltage electron beams (1-5 kV), the LaInO3: Sm3+, LaInO3: Pr3+ and LaInO3: Tb3+ phosphors show the characteristic emissions of Sm3+ ((4)G(5/2)-H-6(5/2,7/2,9/2) transitions, yellow), Pr3+ (P-3(0)-H-3(4), P-3(1)-H-3(5), D-1(2)-H-3(4) and P-3(0)-F-3(2) transitions, blue-green) and Tb3+ (D-5(4)-F-7(6.5,4.3) transitions, green) respectively. The corresponding luminescence mechanisms are discussed. These phosphors have potential applications in field emission displays.