95 resultados para Bismuth telluride


Relevância:

10.00% 10.00%

Publicador:

Resumo:

利用直流磁控溅射法在不同氧氩分压比条件下制备了BiOx薄膜。通过对薄膜在蓝光作用前后的反射率对比度变化的研究发现,氧氩分压比为50%时制备的薄膜具有最佳的光学对比度。利用X射线衍射仪(XRD)、X光电子能谱(XPS)和光谱仪研究了薄膜热处理前后的结构和光谱性质的变化。研究结果表明薄膜光学性质变化主要由薄膜中氧化铋的相变引起。蓝光静态测试结果显示氧氩分压比为50%条件下制备的BiOx薄膜具有很好好的记录敏感度,在11mW的记录功率和800ns的记录脉宽条件下,得到了52%的反射率对比度。此外,BiOx薄膜表现出了非常好的读出稳定性。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

以10MgF2—20CaF2—10SrF2—10BaF2—15YF3—35AlF3氟铝酸盐玻璃为基玻璃引入不同含量的TeO2得到了新的氟碲铝酸盐玻璃.用差热分析方法研究了TeO2对氟铝酸盐玻璃性能的影响,通过拉曼光谱和红外吸收谱来研究玻璃的结构变化.差热分析表明TeO2的增加使玻璃开始析晶温度瓦升高,融化温度%降低,成玻璃能力增加.玻璃结构分析表明氟碲铝酸盐玻璃的结构中存在[FnAl-O—AlFn]、[TeO3]、[TeO2F]和[TeOF2]等多面体,这些多面体由F^-和O^2-离子连接.这种新的氟碲铝

Relevância:

10.00% 10.00%

Publicador:

Resumo:

在氟铝酸盐玻璃组分中加入适量声子能量低的重金属氧化物TeO2,得到一种新的氧氟化物玻璃。该材料具有良好的成玻璃性能,适合制作大尺寸红外窗口镜。研究了TeO2含量对玻璃特征温度、阿贝数和红外透过性能的影响。同时测试了这种玻璃的抗DF激光能力,结果表明:TeO2含量为15%的玻璃,DF激光破坏阈值达14.95kW·cm^-2。分析显示,由于玻璃基质的多声子吸收,对激光能量的吸收而引起的热冲击是导致玻璃破坏的主要原因。进一步降低玻璃中水分,可以提高玻璃抗激光破坏性能。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bismuth (Bi)-doped and Bi/Dy co-doped chalcohalide glasses are investigated as promising materials for amplifiers in optical communication. The samples synthesized at lower melting temperatures (MTs) are characterized by more intensified infrared emissions. With respect to the redox process of a liquid mixture at different MTs, we attribute an emission at 1230 nm to low-valent Bi ions. The lower MT favors the formation of LVB ions, i.e. Bi+ or Bi2+, while the higher MT promotes the production of higher-valent Bi ions Bi3+. An enhanced broadband infrared luminescence with the full-width at half-maximum over 200 nm is achieved from the present Bi/Dy co-doped chalcohalide glasses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on ultrabroad infrared (IR) luminescences covering the 1000-1700-nm wavelength region, from Bi-doped 75GeO(2) 20RO-5Al(2)O(3) 1B(2)O(3) (R = Sr, Ca, and Mg) glasses. The full width at half-maximum of the IR luminescences excited at 980 nm increases (315 -> 440 -> 510 nm) with the change of alkaline earth metal (Mg2+ -> Ca2+ -> Sr2+). The fluorescence lifetime of the glass samples is 1725, 157, and 264 mu s when R is Sr, Ca, and Mg, respectively. These materials may be promising candidates for broad-band fiber amplifiers and tunable laser resources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Er3+ doped multicomponent fluoride based glass was prepared. These precursor fluoride glass samples were then heated using different schedules. Crystalline phase particles were successfully precipitated in the multicomponent fluoride glass samples after heat treatment. The influence of heat treatment on the spectroscopic properties of Er3+ in multicomponent fluoride based glass samples were discussed. Small changes of the Judd-Ofelt parameters Omega(i) (i = 2,4,6) were found in multicomponent fluoride glass samples before and after heat treatment compared to oxyfluoride telluride glass. Preparation conditions used to produce transparent multicomponent fluoride glass ceramics doped with rare-earth ions are discussed. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transparent glass ceramics have been obtained by nucleation and growth of Y2Te6O15 or Er2Te5O13 cubic phase in a new Er3+-doped oxyfluoride tellurite glass. Effect of beat treatment on absorption spectra, luminescence and up-conversion properties in the oxyfluoride tellurite glass has been investigated. With heat treatment the ultraviolet absorption edge red shifted evidently for the oxyfluoride telluride glass. The near infrared emission that corresponds to Er3+:I-4(13/2)-> I-4(15/2) can be significantly enhanced after heat treatment. Under 980 nm LD pumping, red and green up-conversion intensity of Er3+ in the glass ceramic can be observed much stronger than that in the base glass. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report ultrabroad infrared luminescence from Bi-doped aluminogermanate glasses. The infrared luminescence almost covers the whole low loss wavelength region (1200-1650 nm) of silica glass fiber when excited by a diode laser at 980 nm. The full width at half maximum (FWHM) of the luminescence is 510 nm. The luminescence peak can be divided into three Gaussian peaks, and the fluorescence lifetime of the three emissions are 297 mu s, 470 mu s and 1725 mu s, respectively. These fluorescence properties indicate that the glasses are promising material for broadband optical amplifiers. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

abstract {Rare earth ions doped multi-component glass fibers have important application in broad band fiber amplifier and up-conversion fiber lasers. In this paper, the mechanism and the progress of study on rare earth ions doped multi-component glass fibers in broad band fiber amplifier and up-conversion fiber lasers are introduced and reviewed. The questions and the applications of rare earth ions doped multi-component glass fibers in the future are also prospected. Based on the present research progress, it is suggested to further study the tellurite and bismuth glasses, which are used as fiber materials in broad band fiber amplifier. To up-conversion fiber laser, it is still need to further investigate novel glasses, which has low phonon energy and good physical and chemical properties.}

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glasses with compositions 50Bi2O3-xB2O3- (50-x)SiO2(x=0, 10, 20, 30, 40, 50) in mol% have been prepared by using a normal melt-quench technique. The effect of SiO2 addition on thermal stability, optical properties and structural characteristic on Bi2O3-B2O3 glass were systematically investigated by using XRD, DTA, ultraviolet-visible transmittance spectra, midinfrared transmittance spectra and Raman spectra. The experimental results demonstrate that, with the addition of SiO2, thermal stability of glass samples has been obviously improved. Once the amount of SiO2 is too much, the glass samples tend to be phase seperation which results in the decrease of thermal stability. With increasing SiO2 content, the UV cutoff edge firstly shifts to short-wave band and then shifts to long-wave band, and the transmittance of mid-infrared has been greatly improved. With substitution of SiO2 for B2O3, the [BO3] triangles and [BO4] tetrahedral groups are gradually replaced by [SiO4]. [BiO6] octahedral and [SiO4] tetrahedral units are connected forming a vibrational mode of Bi-O-Si. The physical chemistry and optical performance of Bi2O3-B2O3 glass were greatly improved by addition of SiO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Yb3+/Tm3+-codoped oxychloride germanate glasses for developing potential upconversion lasers have been fabricated and characterized. Structural properties were obtained based on the Raman spectra analysis, indicating that PbCl2 plays an important role in the formation of glass network and has an important influence on the maximum phonon energies of host glasses. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions (1)G(4) -> H-3(6) and (1)G(4) -> H-3(4), respectively, were observed at room temperature. With increasing PbCl2 content, the intensity of blue (477 nm) emission increases significantly, while the red (650 nm) emission increases slowly. The results indicate that PbCl2 has more influence on the blue emissions than the red emission in oxychloride germanate glasses. The possible upconversion mechanisms are discussed and estimated. Intense blue upconversion luminescence indicates that these oxychloride germanate glasses can be used as potential host material for upconversion lasers. C (c) 2005 Springer Science + Business Media, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of F- ions on physical and spectroscopic properties of the Yb3+ in tellurite glass system are investigated. The results show that the glass system takes on good thermal stability with the content of ZnF2 lower than 15 mol%, both the emission cross-section and the fluorescence lifetime of Yb3+ ions increase evidently which indicate that such oxyfluoride tellurite glass system is a promising laser host matrix for high power generation. FT-IR spectra were used to analyze the effect of F- ions on the structure of tellurite glasses and OH- groups in this glass system. Analysis demonstrates that addition of fluoride decreases the symmetry of the structure of tellurite glasses which increases the emission cross-section and removes the OH- groups, and which improves the measured fluorescence lifetime of Yb3+ ions. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Frequency upconversion fluorescence property of Er3+-doped oxychloride germanate glass is investigated. Intense green and red emissions centred at 525, 546, and 657nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> 4I(15/2), and F-4(9/2) -> I-4(15/2), respectively, were simultaneously observed at room temperature. The quadratic dependence of the 525, 546, and 657nm emissions on excitation power indicates that a two-photon absorption process occurs under 975nm laser diode (LD) excitation. The Raman spectrum investigation indicates that oxychloride germanate glass has the maximum phonon energy at similar to 805 cm(-1). The thermal stability of this oxychloride germanate glass is evaluated by differential scanning calorimetry, and thermal stability factor Delta T (Delta T = T-x-T-g) is 187 degrees C. Intense upconversion luminescence and good thermal stability indicate that Er3+-doped oxychloride germanate glass is a promising upconversion laser material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel Er3+-doped bismuth lead strontiam glass was fabricated and characterized, and the absorption spectrum and upconversion spectrum of the glass were studied. The Judd-Ofelt intensity parameters Omega(t)(t = 2, 4, 6) were found to be Omega(2) = 3.27 x 10(-20) cm(2), Omega(4) = 1.15 x 10(-20) cm(2), and Omega(6) = 0.38 x 10(-20) cm(2). The oscillator strength, the spontaneous transition probabilities, the fluorescence branching ratios, and excited state lifetimes were also measured and calculated. The upconversion emission intensity varies with the power of infrared excitation intensity. A plot of log I-up vs log I-IR yields a straight line with slope 1.86, 1.88 and 1.85, corresponding to 525, 546, and 657 nm emission bands, respectively, which indicates that a two-photon process for the red and green emission.