74 resultados para Astronomical photography.
Resumo:
Following the quantitative determination of dust cloud parameters, this study investigates the flame propagation through cornstarch dust clouds in a vertical duct of 780 mm height and 160 x 160 mm square cross section, and gives particular attention to the effect of small scale turbulence and small turbulence intensity on flame characteristics. Dust suspensions in air were produced using an improved apparatus ensuring more uniform distribution and repeatable dust concentrations in the testing duct. The dispersion-induced turbulence was measured by means of a particle image velocimetry (PIV) system, and dust concentrations were estimated by direct weighing method. This quantitative assessment made it possible to correlate observed flame behaviors with the parameters of the dust cloud. Upward propagating dust flames, from both closed/open bottom end to open/closed top end of the duct, were visualized by direct light and shadow photography. From the observation of propagation regimes and the measurements of flame velocity, a critical value of the turbulence intensity can be specified below which laminar flame propagation would be established. This transition condition was determined to be 10 cm/s. Laminar flames propagated with oscillations from the closed bottom end to the open top end of the testing duct, while the turbulent flames accelerated continuously. Both laminar and turbulent flames propagated with steady velocity from the open bottom end to the closed top end of the duct. The measured propagation velocity of laminar flames appeared to be in the range of 0.45-0.56 m/s, and it was consistent with the measurements reported in the literature. In the present experimental study, the influence of dust concentration on flame propagation was also examined, and the flame propagation velocity was found weakly sensitive to the variations in dust concentration. Some information on the flame structure was revealed from the shadow records, showing the typical heterogeneous feature of the dust combustion process.
Resumo:
This paper will introduce an atomization experiment of pulsed supersonic water jets and polymer polyacrylamide (PAA) (0.1% and 1.0% weight density) solution jets. The jets are generated from a small high-speed liquid jet apparatus. The schlieren photography is applied to visualize the jets. The velocities of the jets are measured by cutting two laser beams. The effects of the nozzle diameter and the standoff distance on atomization and the jet velocity have been examined. The experiment shows that the polymer solution jets are easier to be atomized than water jets. This may be due to low surface tension of the polymer solution. The nozzle diameter causes different shock structures around the supersonic jets.
Resumo:
Investigation of kerosene combustion in a Mach 2.5 flow was carried out using a model supersonic combustor with cross-section area of 51 mm?70 mm, with special emphases on the characterization of effervescent atomization and the flameholdering mechanism using different integrated fuel injector/flameholder cavity modules. Direct photography, Schlieren imaging, and Planar Laser Induced Fluorescence (PLIF) imaging of OH were utilized to examine the cavity characteristics and spray structure, with and without gas barbotage. Schlieren images illustrate the effectiveness of gas barbotage in facilitating atomization and the importance of secondary atomization when kerosene sprays interacting with a supersonic crossflow. OH-PLIF images further substantiate our previous finding that there exists a local high temperature radical pool within the cavity flameholder and this radical pool plays a crucial role in promoting kerosene combustion in a supersonic combustor. The present results also demonstrate that the cavity characteristics can be different in non-reacting and reacting supersonic flows. As such, the conventional definition of cavity characteristics based on non-reacting flows needs to be revised.
Resumo:
The performance of a small high-speed liquid jet apparatus is described. Water jets of 200m/s to 700m/s have been obtained by firing a deformable lead slug from an air rifle into a stainless steel nozzle containing water sealed with a rubber diaphragm. Nozzle devices of using the impact extrusion (IE) method and cumulation (CU) method are designed to generate jets. The injection sequences are visualized using schlieren photography. The difference between the IE and CU methods in the jet generation is found.
Resumo:
Flammability limits for flames propagating in a rich propane/air mixture under gravity conditions appeared to be 6.3% C3H8 for downward propagation and 9.2% C3H8 for upward propagation. Different limits might be explained by the action of preferential diffusion of the deficient reactant (Le < 1) on the limit flames, which are in different states of instability. In one of the previous studies, the flammability limits under microgtravity conditions were found to be between the upward and downward limits obtained in a standard flammability tube under normal gravity conditions. It was found in those experiments that there are two limits under microgravity conditions: one indicated by visible flame propagation and another indicated by an increase of pressure without observed flame propagation. These limits were found to be far behind the limit for downward-propagating flame at 1 g (6.3% C3H8) and close to the limit for upward-propagating flame at 1 g (9.2% C3H8). It was decided in the present work to apply a special schlieren system and instant temperature measuring system for drop tower experiments to observe combustion development during propagation of the flame front. A small cubic closed vessel (inner side, 9 cm 9 cm 9 cm) with schlieren quality glass windows were used to study limit flames under gravity and microgravity conditions. Flame development in rich limit mixtures, not visible in previous experiments under microgravity conditions for strait photography, was identified with the use of the schlieren method and instant temperature measuring system. It was found in experiments in a small vessel that there is practically no difference in flammability limits under gravity and microgravity conditions. In this paper, the mechanism of flame propagation under these different conditions is systematically studied and compared and limit burning velocity is estimated.
Resumo:
A kind of microstructured polymer optical fiber with elliptical core has been fabricated by adopting in-situ chemical polymerization technology and the secondary sleeving draw-stretching technique. Microscope photography demonstrates the clear hole-structure retained in the fiber. Though the holes distortion is visible, initial laser experiment indicates that light can be strongly confined in the elliptical core region, and the mode field is split obviously and presents the multi-mode characteristic. Numerical modeling is carried out for the real fiber with the measured parameters, including the external diameter of 150 pin, the average holes diameter of 3.3 mu m, and the average hole spacing of 6.3 mu m. by using full-vector plane wave method. The guided mode fields of the numerical simulation are consistent with the experiment result. This fiber shows the strong multi-mode and weak birefringence in the visible and near-infrared band, and has possibility for achieving the fiber mode convertors, mode selective couplers and so on.
Resumo:
This paper describes an experimental study on the oscillation flow characteristics of submerged supersonic gas jets issued from Laval nozzles. The flow pattern during the jet development and the jet expansion feedback phenomenon are studied using a high-speed camera and a pressure measurement system. The experimental results indicate that along the downstream distance, the jet has three flow regimes: (1) momentum jet; (2) buoyant jet; (3) plume. In the region near the nozzle exit a so-called bulge phenomenon is found. Bulging of the jet occurs many times before the more violent jet expansion feedback occurs. During the feedback process, the jet diameter can become several times that of the original one depending on the jet Mach number. The frequencies of the jet bulging and the jet expansion feedback are measured.
Resumo:
This paper reports laboratory measurements of the spectrum of highly ionized sulfur. The spectrum of S Ⅸ–S ⅩⅢ has been observed in the wavelength range 170–500 Å. A total of 54 lines have been measured. Forty-two of them have been classified as 2s22pk–2s2pk+1and 2s2pk–2pk+1 transitions. Twelve other lines have been ascribed to 2s–2p,4p–5s,5p–6s,5d–6p, and 6p–8d transitions. These spectral lines have been identified, among which 22 are new and accurately measured. The analysis of the spectra was based on a comparison with other experimental results and calculated values.
Resumo:
We study the non-Gaussianity induced by the Sunyaev-Zel'dovich (SZ) effect in cosmic microwave background (CMB) fluctuation maps. If a CMB map is contaminated by the SZ effect of galaxies or galaxy clusters, the CMB maps should have similar non-Gaussian features to the galaxy and cluster fields. Using the WMAP data and 2MASS galaxy catalogue, we show that the non-Gaussianity of the 2MASS galaxies is imprinted on WMAP maps. The signature of non-Gaussianity can be seen with the fourth-order cross-correlation between the wavelet variables of the WMAP maps and 2MASS clusters. The intensity of the fourth-order non-Gaussian features is found to be consistent with the contamination of the SZ effect of 2MASS galaxies. We also show that this non-Gaussianity can not be seen by the high-order autocorrelation of the WMAP. This is because the SZ signals in the autocorrelations of the WMAP data generally are weaker than the WMAP-2MASS cross-correlations by a factor f(2), which is the ratio between the powers of the SZ-effect map and the CMB fluctuations on the scale considered. Therefore, the ratio of high-order autocorrelations of CMB maps to cross-correlations of the CMB maps and galaxy field would be effective to constrain the powers of the SZ effect on various scales.
Resumo:
本文依据收集到的392个地面验潮站8个主要分潮(M2、S2、K1、O1、N2、K2、P1及Q1)的调和常数,对现有7个全球大洋潮汐模式的准确度进行了检验,结果显示各模式在深海区域均达到了比较高的准确度,相互之间差别也不大。经验模式GOT00和CSR4.0、同化模式NAO99、反演同化模式TPXO7.0、数值同化模式FES2002和FES2004的M2分潮均方根偏差在3 cm左右,其它分潮(S2、K1、O1、N2、K2、P1及Q1)大约在1~2 cm。本文还依据中国近海18个岛屿的调和常数对其中的5个大洋潮汐模式的准确度进行了检验,结果表明,M2分潮均方根偏差在6~14 cm,明显高于大洋部分的偏差,其中日本国家天文台的潮汐模式NAO99在中国近海的结果相对较准确。 我们利用1992年8月至2008年8月的TOPEX/POSEIDON和JASON-1(T/P-J)卫星高度计资料,对沿卫星轨道的302816个站点进行了14个分潮的潮汐调和分析,得到了全球大洋潮汐的8个主要分潮以及2个气象分潮Sa、Ssa的经验同潮图。主要结果有:(1)各分潮在卫星上升轨道与下降轨道的交叉点(约7000个)相关性分析表明:M2分潮的振幅和迟角的相关系数很高(分别为0.9965和0.9961);S2,K1,O1和Sa分潮也有较好的相关性(相关系数为0.94~0.99);(2)该结果与392地面个验潮站吻合较好,其中M2分潮的振幅、迟角和向量的均方根偏差分别为:1.73 cm,2.340和2.93 cm;S2,K1和O1分潮的振幅、迟角和向量的均方根偏差为1 cm左右,5.250~7.270和1.5~2.1 cm,该精度与最近几年国际上的主要大洋潮汐模式的准确度相近;(3)首次通过卫星资料获得了Sa、Ssa分潮的同潮图。周期为1年的Sa分潮与大洋105个地面站相比,振幅、迟角和向量的均方根偏差分别为1.50 cm、18.360和2.16 cm。在此基础上,进一步分析了构成Sa、Ssa气象分潮的两个主要因素(海水密度以及海面气压)在全球的分布。 在T/P-J等卫星资料无法覆盖到南大洋和北冰洋,本文利用Princeton Ocean Model(POM)进行了数值模拟,模拟结果与162个地面实测站(其中南大洋30个,北冰洋132个)的观测比较一致。基于卫星资料分析的结果和数值模拟结果合并得到了全球大洋的8个主要分潮同潮图。在此基础上通过全球潮汐能量耗散的计算得到潮能通量的分布,并得到全球M2、S2、K1和O1分潮的潮汐能量耗散率为2.431TW、0.401TW、0.336TW和0.176TW。 本文还利用卫星资料对南海潮汐进行了研究,在中国南海,获得了主要的半日潮、全日潮、四分日分潮和长周期分潮(M2,S2,N2,K2,K1,O1,P1,Q1,M4, MS4,Sa, Ssa)的经验同潮图。与南海沿岸94个地面验潮站的数据符合得比较好,M2,S2,K1及O1等4个主要分潮的平均振幅差为2~4 cm,均方根偏差分别是9~11 cm.其它4个主要分潮N2,K2,P1,Q1的平均振幅差为1~2 cm,均方根偏差为2~4 cm。此外,本文还利用卫星高度计资料潮汐分析结果沿卫星轨道进行高通滤波,分离得出中国近海的M2,S2,K1及O1分潮的内潮信息。
Resumo:
Evaluating the mechanical properties of rock masses is the base of rock engineering design and construction. It has great influence on the safety and cost of rock project. The recognition is inevitable consequence of new engineering activities in rock, including high-rise building, super bridge, complex underground installations, hydraulic project and etc. During the constructions, lots of engineering accidents happened, which bring great damage to people. According to the investigation, many failures are due to choosing improper mechanical properties. ‘Can’t give the proper properties’ becomes one of big problems for theoretic analysis and numerical simulation. Selecting the properties reasonably and effectively is very significant for the planning, design and construction of rock engineering works. A multiple method based on site investigation, theoretic analysis, model test, numerical test and back analysis by artificial neural network is conducted to determine and optimize the mechanical properties for engineering design. The following outcomes are obtained: (1) Mapping of the rock mass structure Detailed geological investigation is the soul of the fine structure description. Based on statistical window,geological sketch and digital photographya new method for rock mass fine structure in-situ mapping is developed. It has already been taken into practice and received good comments in Baihetan Hydropower Station. (2) Theoretic analysis of rock mass containing intermittent joints The shear strength mechanisms of joint and rock bridge are analyzed respectively. And the multiple modes of failure on different stress condition are summarized and supplied. Then, through introducing deformation compatibility equation in normal direction, the direct shear strength formulation and compression shear strength formulation for coplanar intermittent joints, as well as compression shear strength formulation for ladderlike intermittent joints are deducted respectively. In order to apply the deducted formulation conveniently in the real projects, a relationship between these formulations and Mohr-Coulomb hypothesis is built up. (3) Model test of rock mass containing intermittent joints Model tests are adopted to study the mechanical mechanism of joints to rock masses. The failure modes of rock mass containing intermittent joints are summarized from the model test. Six typical failure modes are found in the test, and brittle failures are the main failure mode. The evolvement processes of shear stress, shear displacement, normal stress and normal displacement are monitored by using rigid servo test machine. And the deformation and failure character during the loading process is analyzed. According to the model test, the failure modes quite depend on the joint distribution, connectivity and stress states. According to the contrastive analysis of complete stress strain curve, different failure developing stages are found in the intact rock, across jointed rock mass and intermittent jointed rock mass. There are four typical stages in the stress strain curve of intact rock, namely shear contraction stage, linear elastic stage, failure stage and residual strength stage. There are three typical stages in the across jointed rock mass, namely linear elastic stage, transition zone and sliding failure stage. Correspondingly, five typical stages are found in the intermittent jointed rock mass, namely linear elastic stage, sliding of joint, steady growth of post-crack, joint coalescence failure, and residual strength. According to strength analysis, the failure envelopes of intact rock and across jointed rock mass are the upper bound and lower bound separately. The strength of intermittent jointed rock mass can be evaluated by reducing the bandwidth of the failure envelope with geo-mechanics analysis. (4) Numerical test of rock mass Two sets of methods, i.e. the distinct element method (DEC) based on in-situ geology mapping and the realistic failure process analysis (RFPA) based on high-definition digital imaging, are developed and introduced. The operation process and analysis results are demonstrated detailedly from the research on parameters of rock mass based on numerical test in the Jinping First Stage Hydropower Station and Baihetan Hydropower Station. By comparison,the advantages and disadvantages are discussed. Then the applicable fields are figured out respectively. (5) Intelligent evaluation based on artificial neural network (ANN) The characters of both ANN and parameter evaluation of rock mass are discussed and summarized. According to the investigations, ANN has a bright application future in the field of parameter evaluation of rock mass. Intelligent evaluation of mechanical parameters in the Jinping First Stage Hydropower Station is taken as an example to demonstrate the analysis process. The problems in five aspects, i. e. sample selection, network design, initial value selection, learning rate and expected error, are discussed detailedly.