148 resultados para Addition chains
Resumo:
We have developed a novel strategy for the preparation of ion-bonded supramolecular star polymers by RAFT polymerization. An ion-bonded star supramolecule with six functional groups was prepared from a triphenylene derivative containing tertiary amino groups and trithiocarbonate carboxylic acid, and used as the RAFT agent in polymerizations of tert-butyl acrylate (tBA) and styrene (St). Molecular weights and structures of the polymers were characterized by H-1 NMR and GPC. The results show that the polymerization possesses the character of living free-radical polymerization and the ion-bonded supramolecular star polymers PSt, PtBA, and PSt-b-PtBA, with six well-defined arms, were successfully synthesized.
Resumo:
A facile and efficient synthesis of substituted alpha-alkylidene-beta-lactams have been developed via a NaOH-promoted intramolecular aza-Michael addition of alpha-carbamoyl, alpha-(1-chlorovinyl) ketene-S,S-acetals and subsequent nucleophilic vinylic substitution (SNV) reaction in alcoholic aqueous media. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Electrostatic assembly of one species can be realized using gelatin as a polyampholyte. Under suitable conditions where the electrostatic attraction and repulsion were both significant and in balance, linear growth of multilayers driven by electrostatic interactions was sustained over many successive assembly steps, and the maximum amount of adsorption of each layer was reached when the solution pH was around the isoelectric point. The rearrangement of the adsorbed chains after drying was confirmed by contact angle analysis. In addition with only one species involved, the assembled thin films should be chemically uniform rather than layered.
Resumo:
The B3LYP hybrid density functional method has been carried Out to Study theoretically the mechanisin of Pd(0)-catalyzed alkyne cyanoboration reaction. Both the intermolecular and intramolecular alkyne cyanoboration reactions were studied. For each reaction, three paths were proposed. In path A of each reaction, the first step is B-CN bond oxidative addition to bisphosphine complex Pd(PH3)(2), in path B of each reaction, the first step is alkyne coordination to bisphosphine complex Pd(PH3)2, and in path C of each reaction, the first step is the PH3 dissociation front Pd(PH3)2 to form monophosphine complex Pd(PH3) For both reactions, path B is favored.
Resumo:
The reaction mechanism of the Pd(0)-catalyzed alkyne cyanothiolation reaction is investigated by MP2, CCSD(T) and the density functional method B3LYP. The overall reaction mechanism is examined. The B3LYP results are consistent with the results of CCSD(T) and MP2 methods for the isomerization, acetylene insertion and reductive elimination steps, but not for the oxidative addition step. For the oxidative addition, the bisphosphine and monophosphine pathways are competitive in B3LYP, while the bisphosphine one is preferred for CCSD(T) and MP2 methods.
Resumo:
A series Of pyrrolidine-triazole based dendritic catalysts have been synthesized and applied directly in the asymmetric Michael addition of ketones to nitroolefins without the use of an organic solvent. Good yields (up to 99%), and high diastereoselectivities (up to syn/anti = 45:1) and enantioselectivities (up to 95% ee) have been obtained. Furthermore. the third generation catalyst can be reused at least five times without significant loss of catalytic activity. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A supramolecular complex [Cu(phen)(2)H2O]{[Cu(phen)(H2O)](2)[C6AS]}center dot 2.5H(2)O (phen = 1,10'-phenanthroline and C6AS = p-sulfonatocalix[6]arene) has been synthesized under hydrothermal condition, and characterized by IR spectroscopy, TG analysis and single crystal X-ray diffraction. In the structure, unprecedented 1D ({[Cu(phen)(H2O)](2)[C(6)AS]}(2-))(n) coordination chains (exactly being belts) are stacked into some 2D layers by the pi center dot center dot center dot pi stacking interactions, which are further interconnected into a 3D extended structure by hydrogen bonding.
Resumo:
Branched polystyrenes with abundant pendant vinyl functional groups were prepared via radical polymerization of an asymmetric divinyl monomer, which possesses a higher reactive styryl and a lower reactive butenyl. Employing a fast reversible addition fragmentation chain transfer (RAFT) equilibrium, the concentration of active propagation chains remained at a low value and thus crosslinking did not occur until a high level of monomer conversion. The combination of a higher reaction temperature (120 degrees C) and RAFT agent cumyl dithiobenzoate was demonstrated to be optimal for providing both a more highly branched architecture and a higher polymer yield.
Resumo:
NaYF4:Yb3+, Er3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with SiO2-NH2 layer, these NaYF4:Yb3+, Er3+ nanoparticles can conjugate with activated avidin molecules (activated by the oxidation of the oligosaccharide chain). The as-formed NaYF4:Yb3+, Er3+ nanoparticles, NaYF4:Yb3+, Er3+ nanoparticles functionalized with amino groups, avidin conjugated amino-functionalized NaYF4:Yb3+, Er3+ nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared (FT-IR), UV/Vis absorption spectra, and up-conversion luminescence spectra, respectively.
Resumo:
Chiral ligand 2-(2'-piperidinyl)pyridine 1 has been synthesized in good overall yield by sequential benzylation, hydrogenation and debenzylation of 2,2'-bipyridine. Its enantiomerically pure enantiomers have been obtained by resolution of 2-(1-benzyl-2-piperidinyl)pyridine 2 with D-tartaric acid (or L-tartaric acid) followed by debenzylation. The absolute configuration was determined by X-ray analysis of the (S)-2 D-tartrate. It was demonstrated that I can be used as an effective enantioselective catalyst in the addition of diethylzinc to aldehydes.
Resumo:
Effect of La-Mg-based alloy (AB(5)) addition on Structure and electrochemical characteristics of Ti0.10Zr0.15V0.35Cr0.10Ni0.30 hydrogen storage alloy has been investigated systematically. XRD shows that the matrix phase structure is not changed after adding AB(5) alloy, however, the amount of the secondary phase increases with increasing AB(5) alloy content. The electrochemical measurements show that the plateau pressure Ti0.10Zr0.15V0.35Cr0.10Ni0.30 + x% La0.85Mg0.25Ni4.5Co0.35Al0.15 (X = 0, 1, 5, 10, 20) hydrogen storage alloys increase with increasing x, and the width of the pressure plateau first increases when x increases from 0 to 5 and then decreases as x increases further, and the maximum discharge capacity changes in the same trend.
Resumo:
A novel metal-organic framework with unprecedented interweaving of coaxial single-helical and equal double-helical chains of opposite chirality, which features a super-connective helix simultaneously tangling with eight helices, was reported.
Resumo:
3'-Nonafluorobutylmethyl-4'-methyl-spiro[cyclopentyl-9,1']fluorenes were successfully synthesized via tandem radical-addition reactions between 9,9-diallylfluorenes and perfluorobutyl iodide in the presence of a radical initiator followed by reduction under mild conditions. Single crystal analysis indicates that two substituents at 3,4-positions of cyclopentane are in a maleinoid form. Accordingly, four oligo(fluorene-co-bithiophene)s with the same molecular length of similar to 10 nm (7 fluorene units and 12 thiophene units) containing one to three novel spiro-fluorene units were synthesized.
Resumo:
The static and dynamic properties of polymer chains in athermal solvents with different sizes are studied by molecular dynamics method. With increasing solvent size, the radius of gyration and the diffusion coefficient of the polymer decay fast until a critical solvent size is reached. For the polymer diffusion coefficients, this decay only depends on the solvent size; while for the radius of gyration of polymers, this decay depends on both solvent size and the length of the polymers. The increase of solvent size also makes the polymer tend to be thicker ellipsoid until a critical solvent size is reached. The static scaling exponent of the polymer also shows the solvent size dependence. Moreover, four regions are identified where the polymers show different dynamic behaviors according to the dynamic structure factors of the polymer.
Effects of Y2O3 addition on the phase evolution and thermophysical properties of lanthanum zirconate
Resumo:
Lanthanum zirconate (La2Zr2O7, LZ) powders with the addition of various Y2O3 contents for potential thermal barrier coatings (TBCs) application were synthesized by solid-state reaction. The structure evolution, sintering-resistance and thermophysical properties of the synthesized powders and sintered ceramics were systematically studied. X-ray diffraction (XRD) results indicate that LZ containing 3-12 wt.% Y2O3 mainly keeps a pyrochlore-type structure, and two new phases of LaYO3 and Y0.18Zr0.82O1.91 are also detected. Raman spectra confirm that the higher the Y2O3 content, the easier is the formation of LaYO3.