533 resultados para ATOMIC FORCE MISCROSCOPY
Resumo:
ZnO piezoelectric thin films were prepared on crystal substrate Si(111) by sol-gel technology, then characterized by scanning electron microscopy, X-ray diffraction and atomic force microscopy (AFM). The ZnO films characterized by X-ray diffraction are highly oriented in (002) direction with the growing of the film thickness. The morphologies, roughness and grain size of ZnO film investigated by AFM show that roughness and grain size of ZnO piezoelectric films decrease with the increase of the film thickness. The roughness dimension is 2.188-0.914 nm. The piezoelectric coefficient d(33) was investigated with a piezo-response force microscope (PFM). The results show that the piezoelectric coefficient increases with the increase of thickness and (002) orientation. When the force reference is close to surface roughness of the films, the piezoelectric coefficient measured is inaccurate and fluctuates in a large range, but when the force reference is big, the piezoelectric coefficient d(33) changes little and ultimately keeps constant at a low frequency.
Resumo:
The instability of the crack tip in brittle Mg-based bulk metallic glass (BMG) is studied. The formation of various fractographic surfaces of the BMG is associated with the instability of the fluid meniscus, which is due to viscous fluid matter being present on the fracture process zone. Depending on the values of the wavelength of the initial perturbation of the fluid meniscus and the local stress intensity factor, different fracture surface profiles, i.e. a dimple-like structure, a periodic corrugation pattern and a pure mirror zone are formed. The fractographic evolution is significantly affected by the applied stress. A decreased fracture Surface roughness is observed under a low applied stress. An increased fracture surface roughness, which has frequently been reported by other researchers, is also observed in the present studies under a high applied stress. Unique fractographic features are attributed to the non-linear hyperelastic stiffening for less softening) mechanism. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
By means of Tersoff and Morse potentials, a three-dimensional molecular dynamics simulation is performed to study atomic force microscopy cutting on silicon monocrystal surface. The interatomic forces between the workpiece and the pin tool and the atoms of workpiece themselves are calculated. A screw dislocation is introduced into workpiece Si. It is found that motion of dislocations does not occur during the atomic force microscopy cutting processing. Simulation results show that the shear stress acting on dislocation is far below the yield strength of Si.
Resumo:
In this article, optimization of shear adhesion strength between an elastic cylindrical fiber and a rigid substrate under torque is studied. We find that when the radius of the fiber is less than a critical value, the bonding-breaking along the contact interface occurs uniformly, rather than by mode III crack propagation. Comparison between adhesion models under torque and tension shows that nanometer scale of fibers may have evolved to achieve optimization of not only the normal adhesive strength but also the shear adhesive strength in tolerance of possible contact flaws.
Resumo:
Gadolinium oxide thin films have been prepared on silicon (100) substrates with a low-energy dual ion-beam epitaxial technique. Substrate temperature was an important factor to affect the crystal structures and textures in an ion energy range of 100-500 eV. The films had a monoclinic Gd2O3 structure with preferred orientation ((4) over bar 02) at low substrate temperatures. When the substrate temperature was increased, the orientation turned to (202), and finally, the cubic structure appeared at the substrate temperature of 700 degreesC, which disagreed with the previous report because of the ion energy. The AES studies found that Gadolinium oxide shared Gd2O3 structures, although there were a lot of oxygen deficiencies in the films, and the XPS results confirmed this. AFM was also used to investigate the surface images of the samples. Finally, the electrical properties were presented. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
High dose Mn was implanted into semi-insulating GaAs substrate to fabricate embedded ferromagnetic Mn-Ga binary particles by mass-analyzed dual ion beam deposit system at room temperature. The properties of as-implanted and annealed samples were measured with X-ray diffraction, high-resolution X-ray diffraction to characterize the structural changes. New phase formed after high temperature annealing. Sample surface image was observed with atomic force microscopy. All the samples showed ferromagnetic behaviour at room temperature. There were some differences between the hysteresis loops of as-implanted and annealed samples as well as the cluster size of the latter was much larger than that of the former through the surface morphology. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Capillary forces are dominant in adhesive forces measured with an atomic force microscope (AFM) in ambient air, which are thought to be dependent on water film thickness, relative humidity and the free energy of the water film. In this paper, besides these factors, we study the nature of the 'pull-off' force on a variety of atmospheres as a function of the contact time. It is found that capillary forces strongly depend on the contact time. In lower relative humidity atmosphere, the adhesion force is almost independent of the contact time. However, in higher relative humidity, the adhesion force increases with the contact time. Based on the experiment and a model that we present in this paper, the growth of the liquid bridge can be seen as undergoing two processes: one is water vapour condensation; the other is the motion of the thin liquid film that is absorbed on the substrate. The experiment and the growth model presented in this paper have direct relevance to the working mechanism of AFM in ambient air.
Resumo:
Thoroughly understanding AFM tip-surface interactions is crucial for many experimental studies and applications. It is important to realize that despite its simple appearance, the system of tip and sample surface involves multiscale interactions. In fact, the system is governed by a combination of molecular force (like the van der Waals force), its macroscopic representations (such as surface force) and gravitational force (a macroscopic force). Hence, in the system, various length scales are operative, from sub-nanoscale (at the molecular level) to the macroscopic scale. By integrating molecular forces into continuum equations, we performed a multiscale analysis and revealed the nonlocality effect between a tip and a rough solid surface and the mechanism governing liquid surface deformation and jumping. The results have several significant implications for practical applications. For instance, nonlocality may affect the measurement accuracy of surface morphology. At the critical state of liquid surface jump, the ratio of the gap between a tip and a liquid dome (delta) over the dome height (y(o)) is approximately (n-4) (for a large tip), which depends on the power law exponent n of the molecular interaction energy. These findings demonstrate that the multiscale analysis is not only useful but also necessary in the understanding of practical phenomena involving molecular forces. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
根据AFM(Atomic-Force Microscope原子力显微镜)实验得到的典型压入曲线给出了一种标定电压-挠度转化系数的方法。对压入曲线进行常规的数据处理,结果显示在起始段和末段各有5nm左右的名义压入深度。然而,有限元计算结果表明上述名义压入深度并非真正的针尖压入样品的深度。通过悬臂梁响应、光线传播、四象限接收器等几个方面的非线性效应分析,得到了实验中各部分非线性效应对实验结果的影响方式和误差范围,从而发现压入实验中四象限接收器上光斑相对移动引起的非线性效应是造成错误判读压入深度的重要原因。最后,对如何减小测量误差和如何在一定误差范围内得到可靠的实验结果给出了一些建议.
Resumo:
采用原子力显微镜对溶菌酶和刀豆蛋白A的分子间相互作用力的情况进行了研究,并用动态光散射研究了此二种分子间相互作用力有较大差异的蛋白质在晶体生长条件和非生长条件下,溶液中的聚集体的状态(大小和分散度)随浓度和温度的变化情况.实验结果表明,范德华力强的刀豆蛋白A在成核前,溶液中的聚集体不能很快转变为生长基元,导致晶体生长时间长;而范德华力弱的溶菌酶,溶液中的聚集体可以很快转变成生长基元,晶体生长时间也较短.
Resumo:
随着后基因组时代的到来以及蛋白质组学研究的深入开展,研究蛋白质晶体生长成为生物化学和结构生物学领域一个广泛关注的课题。通过使用原子力显微镜(Atomic Force Microscope,简称AFM)对杜仲抗真菌蛋白(eucommia antifungal protein,简称EAFP)的晶体在有母液存在下原位实时动态地进行了晶面生长观察。研究结果表明:不同过饱和度对EAFP晶体生长形貌的影响较大,较高的过饱和度下生长很快,生长台阶密度高,较高的过饱和度下主要进行各向异性二维台阶的发生、发展,较低的过饱和度下主要采用螺旋位错的生长方式,当过饱和度极低时生长缓慢,且晶体表面有很多小孔存在,晶面生长很不完整;还对不同过饱和度下晶体生长速率进行了定量的测量,也反映了过饱和度对EAFP晶体生长的影响;同时对在AFM观察过程中由探针的扫描速度和方向对表面形貌的影响进行了讨论。
Resumo:
The tribological properties of the high-strength and high-modulus ultrahigh molecular weight polyethylene (UHMWPE) film and the UHMWPE composites reinforced by multiwalled carbon nanotubes (MWCNT/UHMWPE) were investigated using a nanoindenter and atomic force microscope (AFM). The MWCNT/UHMWPE composites films exhibited not only high wear resistance but also a low friction coefficient compared to the pure UHMWPE films. We attribute the high wear resistance to the formation of the new microstructure in the composites due to the addition of MWCNTs.
Resumo:
The mechanism of fatigue crack nucleation for nanocrystalline (nc) nickel was experimentally investigated in this paper. The samples of electrodeposited ne nickel were loaded cyclically by using a three point bending instrument at first. Then, atomic force microscopy (AFM) was used to scanning the sample surface after fatigue testing. The results indicated that, after fatigue testing, there are vortex-like cells with an average size of 108nm appeared along the crack on nc nickel sample. And, the roughness of sample surface increased with the maximum stress at the surface.
Resumo:
ZnO piezoelectric thin films were prepared on crystal substrate Si(111) by sol-gel technology, then characterized by scanning electron microscopy, X-ray diffraction and atomic force microscopy (AFM). The ZnO films characterized by X-ray diffraction are highly oriented in (002) direction with the growing of the film thickness. The morphologies, roughness and grain size of ZnO film investigated by AFM show that roughness and grain size of ZnO piezoelectric films decrease with the increase of the film thickness. The roughness dimension is 2.188-0.914 nm. The piezoelectric coefficient d(33) was investigated with a piezo-response force microscope (PFM). The results show that the piezoelectric coefficient increases with the increase of thickness and (002) orientation. When the force reference is close to surface roughness of the films, the piezoelectric coefficient measured is inaccurate and fluctuates in a large range, but when the force reference is big, the piezoelectric coefficient d(33) changes little and ultimately keeps constant at a low frequency.
Phage M13Ko7 Detection With Biosensor Based On Imaging Ellipsometry And Afm Microscopic Confirmation
Resumo:
A rapid detection and identification of pathogens is important for minimizing transfer and spread of disease. A label-free and multiplex biosensor based on imaging ellipsometry (BIE) had been developed for the detection of phage M13KO7. The surface of silicon wafer is modified with aldehyde, and proteins can be patterned homogeneously and simultaneously on the surface of silicon wafer in an array format by a microfluidic system. Avidin is immobilized on the surface for biotin-anti-M13 immobilization by means of interaction between avidin and biotin, which will serve as ligand against phage M13KO7. Phages M13KO7 are specifically captured by the ligand when phage M13KO7 solution passes over the surface, resulting in a significant increase of mass surface concentration of the anti-M13 binding phage M13KO7 layer, which could be detected by imaging ellipsometry with a sensitivity of 10(9) pfu/ml. Moreover, atomic force microscopy is also used to confirm the fact that phage M13KO7 has been directly captured by ligands on the surface. It indicates that BIE is competent for direct detection of phage M13KO7 and has potential in the field of virus detection. (C) 2008 Elsevier B.V. All rights reserved.