479 resultados para 4H-SiC substrate


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbonized buffer layers were formed with C2H4 on Si(100) and Si(111) substrates using different methods and SIC epilayers were grown on each buffer layer at 1050 degrees C with simultaneous supply of C2H4 and Si2H6. The structure of carbonized and epitaxy layers was analyzed with in situ RHEED. The buffer layers formed at 800 degrees C were polycrystalline on both Si(100) and Si(111) substrates whereas they were single crystals, with twins on Si(100) and without tu ins on Si(111)substrates. when formed with a gradual rise in substrate temperature from 300 degrees C to growth temperature. Raising the substrate temperature slowly results in the formation of more twins. Epilayers grown on carbonized polycrystalline lavers are polycrystalline. Single crystal epilayers without twins grow on single crystalline buffer layers without twins or with a few twins. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first heteropoly acid-dipeptide complex, (HGly-Gly)(3)PMo12O40.4H(2)O, was synthesized and characterized by elemental analysis, IR, UV, H-1 NMR and single crystal X-ray diffraction. The X-ray crystallographic study showed that the crystal structure was constructed from N-H...O and O-H...O hydrogen bonds among the (HGly-Gly)(+), H2O and PMo12O403- units. This structure represents a model interaction between polyoxometalates and proteins. The complex has photosensitivity under irradiation by sunlight. The fluorescent activity of this compound is also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of the pseudopotential plane-wave method and the local-density-functional theory, this paper studies energetics, stress-strain relation, stability, and ideal strength of beta-SiC under various loading modes, where uniform uniaxial extension and tension and biaxial proportional extension are considered along directions [001] and [111]. The lattice constant, elastic constants, and moduli of equilibrium state are calculated and the results agree well with the experimental data. As the four SI-C bonds along directions [111], [(1) over bar 11], [11(1) over bar] and [111] are not the same under the loading along [111], internal relaxation and the corresponding internal displacements must be considered. We find that, at the beginning of loading, the effect of internal displacement through the shuffle and glide plane diminishes the difference among the four Si-C bonds lengths, but will increase the difference at the subsequent loading, which will result in a crack nucleated on the {111} shuffle plane and a subsequently cleavage fracture. Thus the corresponding theoretical strength is 50.8 GPa, which agrees well with the recent experiment value, 53.4 GPa. However, with the loading along [001], internal relaxation is not important for tetragonal symmetry. Elastic constants during the uniaxial tension along [001] are calculated. Based on the stability analysis with stiffness coefficients, we find that the spinodal and Born instabilities are triggered almost at the same strain, which agrees with the previous molecular-dynamics simulation. During biaxial proportional extension, stress and strength vary proportionally with the biaxial loading ratio at the same longitudinal strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to further investigate nanoindentation data of film-substrate systems and to learn more about the mechanical properties of nanometer film-substrate systems, two kinds of films on different substrate systems have been tested with a systematic variation in film thickness and substrate characteristics. The two kinds of films are aluminum and tungsten, which have been sputtered on to glass and silicon substrates, respectively. Indentation experiments were performed with a Nano Indent XP II with indenter displacements typically about two times the nominal film thicknesses. The resulting data are analyzed in terms of load-displacement curves and various comparative parameters, such as hardness, Young's modulus, unloading stiffness and elastic recovery. Hardness and Young's modulus are investigated when the substrate effects are considered. The results show how the composite hardness and Young's modulus are different for different substrates, different films and different film thicknesses. An assumption of constant Young's modulus is used for the film-substrate system, in which the film and substrate have similar Young's moduli. Composite hardness obtained by the Joslin and Oliver method is compared with the directly measured hardness obtained by the Oliver and Pharr method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations are performed to study adhesion and peeling of a short fragment of single strand DNA (ssDNA) molecule from a graphite surface. The critical peel-off force is found to depend on both the peeling angle and the elasticity of ssDNA. For the short ssDNA strand under investigation, we show that the simulation results can be explained by a continuum model of an adhesive elastic band on substrate. The analysis suggests that it is often the peak value, rather than the mean value, of adhesion energy which determines the peeling of a nanoscale material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro-indentation test at scales on the order of sub-micron has shown that the measured hardness increases strongly with decreasing indent depth or indent size, which is frequently referred to as the size effect. Simultaneously, at micron or sub-micron scale, the material microstructure size also has an important influence on the measured hardness. This kind of effect, such as the crystal grain size effect, thin film thickness effect, etc., is called the geometrical effect by here. In the present research, in order to investigate the size effect and the geometrical effect, the micro-indentation experiments are carried out respectively for single crystal copper and aluminum, for polycrystal aluminum, as well as for a thin film/substrate system, Ti/Si3N4. The size effect and geometrical effect are displayed experimentally. Moreover, using strain gradient plasticity theory, the size effect and the geometrical effect are simulated. Through comparing experimental results with simulation results, length-scale parameter appearing in the strain gradient theory for different cases is predicted. Furthermore, the size effect and the geometrical effect are interpreted using the geometrically necessary dislocation concept and the discrete dislocation theory. Member Price: $0; Non-Member Price: $25.00

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to the layer thickness and effective Young’s modulus, the impact of the kinematic assumptions, interfacial condition, in-plane force, boundary conditions, and structure dimensions on the curvature of a film/substrate bilayer is examined. Different models for the analysis of the bilayer curvature are compared. It is demonstrated in our model that the assumption of a uniform curvature is valid only if there is no in-plane force. The effects of boundary conditions and structure dimensions, which are not-fully-included in previous models are shown to be significant. Three different approaches for deriving the curvature of a film/substrate bilayer are presented, compared, and analyzed. A more comprehensive study of the conditions regarding the applicability of Stoney’s formula and modified formulas is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

首次在涂敷PEI的玻璃表面上制备了癸酸及全氟癸酸的单分子层膜。研究了成膜机理及摩擦特性。结果表明。脱水剂DCCD促进了癸酸或全氟癸酸与PEI酞胺化的反应。导致两种羧酸在PEI表面产生了靠化学键(酞胺键)连接的稳定的单分子层膜,摩擦、磨损实验表明。单分子层有机膜的摩擦特性受膜的组成、表面能及有序性和堆积密度的重要影响。表面能越低,有序性和堆积密度越高。摩擦系数越低。与碳氢化合物相比。碳氟化合物形成的有序膜具有更高的强度和抗磨性能。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical behaviour of a composite of Al–5Cu matrix reinforced with 15% SiC particles was studied at different strain rates from 1×10−3 to 2.5×103 s−1 using both a conventional universal testing machine (for low strain-rate tests) and a split Hopkinson bar (for tests at dynamic strain rates). Whilst the yield stress of the composite increases as the strain rate increases, the maximum flow stresses, 440 MPa for compression and 450 MPa for tension, are independent of strain rate. The microstructures and defect structures of the deformed composite were studied with both scanning electron microscopy and transmission electron microscopy and were correlated to the observed mechanical behaviour. Fracture surface studies of samples after dynamic tensile testing indicates that failure of the composite is controlled by ductile failure of the aluminium matrix by the nucleation, growth and coalescence of voids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite element-based thermoelastic anisotropic stress model for hexagonal silicon carbide polytype is developed for the calculation of thermal stresses in SiC crystals grown by the physical vapor transport method. The composite structure of the growing SiC crystal and graphite lid is considered in the model. The thermal expansion match between the crucible lid and SiC crystal is studied for the first time. The influence of thermal stress on the dislocation density and crystal quality is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new X-ray diffraction method for characterising thermal mismatch stress (TMS) in SiCw–Al composite has been developed. The TMS and thermal mismatch strain (TMSN) in SiC whiskers are considered to be axis symmetrical, and can be calculated by measuring the lattice distortion of the whiskers. Not only the average TMS in whiskers and matrix can be obtained, but the TMS components along longitudinal and radial directions in the SiC whiskers can also be deduced. Experimental results indicate that the TMS in SiC whiskers is compressive, and tensile in the aluminium matrix. The TMS and TMSN components along the longitudinal direction in the SiC whiskers are greater than those along the radial direction for a SiCw–Al composite quenched at 500°C.