96 resultados para wind velocity
Resumo:
The properties of a five-level K-type system are investigated. With the controlling fields, the properties of the dispersion and absorption of the system are changed greatly. The system can produce anomalous dispersion regions with absorption and normal dispersion regions with absorption or transparency. Furthermore, the group velocity can be varied from subluminal to superluminal by varying the intensity of the controlling field and the probe detunings in principle. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We describe a method to generate an ultra-slow atomic beam by velocity selective resonance (VSR). A VSR experiment on a metastable helium beam in a magnetic field is presented and the results show that the transverse velocity of the defected beam can be cooled and precisely controlled to less than the recoil velocity, depending on the magnitude of the magnetic field. We extend this idea to a cold atomic cloud to produce an ultra-slow Rb-87 beam that can be used as a source of an atomic fountain clock or a space clock.
Resumo:
Four filamentous cyanobacteria, Microcoleus vaginatus, Phormidium tenue, Scytonema javanicum (Kutz.) and Nostoc sp., and a single-celled green alga, Desmococcus olivaceus, all isolated from Shapotou (Ningxia Hui Autonomous Region of China), were batch cultured and inoculated onto unconsolidated sand in greenhouse and field experiments. Their ability to reduce wind erosion in sands was quantified by using a wind tunnel laboratory. The major factors related to cohesion of algal crusts, such as biomass, species, species combinations, bioactivity, niche, growth phase of algae, moisture, thickness of the crusts, dust accretion (including dust content and manner of dust added) and other cryptogams (lichens, fungi and mosses) were studied. The best of the five species were M. vaginatus and P. tenue, while the best mix was a blend of 80% M. vaginatus and 5% each of P. tenue, S. javanicum, Nostoc sp. and D. olivaceus. The threshold friction velocity was significantly increased by the presence of all of the cyanobacterial species, while the threshold impact velocity was notably increased only by the filamentous species. Thick crusts were less easily eroded than thin crusts, while biomass was more effective than thickness. Dust was incorporated best into Microcoleus crust when added in small amounts over time, and appeared to increase growth of the cyanobacterium as well as strengthen the cohesion of the crust. Microbial crust cohesion was mainly attributed to algal aggregation, while lichens, fungi and mosses affected more the soil structure and physico-chemical properties.
Resumo:
The effects of wind speed on loss of water from N. flagelliforme colonies were investigated indoors in an attempt to assess its ecological significance in field. Wind enhanced the process of waterless; the half-time of desiccation at wind speeds of 2.0 and 3.4 m s(-1) was, respectively, shortened to one-third and one-fifth at 20 degrees C and, to one-sixth and one-eighth at 27 degrees C that of still air. Photosynthetic efficiency was not affected before the wet alga lost about 50% water.
Resumo:
Surface texturization is an effective way to enhance the absorption of light for optoelectronic devices but it also aggravates the surface recombination by enlarging the surface area. In order to evaluate the influence of texture structures on the surface recombination, an effective surface recombination velocity is defined which is assumed to have an equivalent recombination effect on a flat surface. Based on numerical and analytical calculation, the dependences of effective surface recombination on the pattern geometry, the surface recombination velocity, and the diffusion length are analyzed.
Resumo:
A complete set of match calculation methods for optimum sizing of PV/wind hybrid system is presented. In this method, the more accurate and practical mathematic models for characterizing PV module, wind generator and battery are adopted; combining with hourly measured meteorologic data and load data, the performance of a PV/wind hybrid system is determined on a hourly basis; by fixing the capacity of wind generators, the whole year's LPSP (loss of power supply probability) values of PV/wind hybrid systems with different capacity of PV array and battery bank are calculated, then the trade-off curve between battery bank and PV array capacity is drawn for the given LPSP value; the optimum configuration which can meet the energy demand with the minimum cost can be found by drawing a tangent to the trade-off curve with the slope representing the relationship between cost of PV module and that of the battery. According to this match calculation method, a set of match calculation programs for optimum sizing of PV/wind hybrid systems have been developed. Applying these match calculation programs to an assumed PV/wind hybrid system to be installed at Waglan island of Hong Kong, the optimum configuration and its hourly, daily, monthly and yearly performances are given. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
High-quality and high-resistivity GaN films were grown on (0001) sapphire face by metal-organic vapour phase epitaxy. To measure the surface acoustic wave properties accurately, we deposited metallized interdigital transducers on the GaN surface. The acoustic surface wave velocity and electromechanical coupling coefficient were measured, respectively, to be 5667 m/s and 1.9% by the pulse method.
Resumo:
The occurrences of diapirs, gas-filled zones and gas plumes in seawater in Qiongdongnan Basin of South China Sea indicate that there may exist seepage system gas-hydrate reservoirs. Assuming there has a methane venting zone of 1500 m in diameter, and the methane flux is 1000 kmol/a, and the temperature of methane hydrate-bearing sediments ranges from 3 degrees C to 20 degrees C, then according to the hydrate film growth theory, by numerical simulation, this paper computes the temperatures and velocities in 0 mbsf, 100 mbsf, 200 mbsf, 425 mbsf over discrete length, and gives the change charts. The results show that the cementation velocity in sediments matrix of methane hydrate is about 0.2 nm/s, and the seepage system will evolve into diffusion system over probably 35000 years. Meanwhile, the methane hydrate growth velocity in leakage system is 20 similar to 40 times faster than in diffusion system.
Resumo:
Ultra-broadband optical parametric chirped-pulse amplification is analyzed based the compensation of phase-mismatch, which is achieved by matching of both group-velocity and pulse-front between signal and idler by the combination of the noncollinear-phase-match and pulse-front-tilt. The results show exactly matching of both group-velocity and pulse-front is the important criterion for constructing an UBOPCPA. Its general model is developed, in which the group velocities, noncollinear angles. spatial walk-off angles, linear angular spectral dispersion coefficients and pulse-front tilted angles are suitably linked to each other. Finally, specific numerical calculations and simulations are presented for beta-barium borate OPCPA with type-1 noncollinear angularly dispersed geometry. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
We propose a method of effectively extending the stimulated Brillouin scattering (SBS) gain bandwidth in a single-mode optical fiber to reduce group-velocity-dispersion (GVD)-dependent pulse spread of SBS slow light. This can be done by overlapping doublet SBS gain spectra synthesized from a single pump laser. Numerical calculations are performed to verify our proposed method. We find that there exists the optimum spectral separation between two center frequencies of the doublet SBS gain spectrum with respect to the inherent spectral width of the pump laser, which makes it possible to effectively reduce the signal pulse broadening due to GVD. We show that the maximum time delay of the amplified signal pulse can be approximately two times longer than that by a previously reported method using a single broadband pump laser. (c) 2008 Optical Society of America.