74 resultados para whipping instability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rayleigh-Marangoni-Benard convective instability (R-M-B instability) and flow patterns in the two-layer system of silicon oil 10cSt and Fluorinert FC70 liquids are studied theoretically and experimentally. Both linear instability analysis and 2D numerical simulation (A=L/H=10) were performed to study the influence of thermocapillary force on the convective instability of the two-layer system. Time-dependent oscillations arising at the onset of convection were investigated in a larger various range of two-layer depth ratios (Hr=H1/H2) from 0.2 to 5.0 for different total depth less than 12mm. Our results are different from the previous study on the Rayleig-B閚ard instability and show the strong effects of thermocapillary force at the interface on the time-dependent oscillations at the onset of instability convection. Primary experimental results of the critical instability parameters and the convective structure in the R-M-B convection have been obtained by using the digital particle image velocimetry (DPIV) system, and a good agreement in comparison with the results of numerical simulation was obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evaporative convection and instability give rise to both scientific and technological interests. Practically, a number of the industrial applications such as thin-film evaporators, boiling technologies and heat pipes concern with the evaporation process of which through the vapor-liquid interface the heat and mass transfer occur. From a physical viewpoint, one of interesting questions is the mechanisms of convection instability in thin-liquid layers induced by the coupling of evaporation phenomenon and Marangoni effect at the mass exchanged interface. Classical theories, including Rayleigh’s and Pearson’s, have only successfully explained convection in a liquid layer heated from below without evaporation. However these theories are unable to explain the convection in an evaporating thin layer, especially liquid layer is cooled from below. In present paper, a new two-sided model is put forward rather than the one-sided model in previous works. In previous works, the vapor is treated as passive gas and dynamics of vapor has been ignored. In this case, the vapor liquid system can be described by one-sided model. In our two-sided model, the dynamics of vapor should be considered. Linear instability analysis of the Marangoni-Bénard convection in the two-layer system with an evaporation interface is performed. We define a new evaporating Biot number which is different from the Biot number in one-sided model and obtain the curves of critical Marangoni number versus wave number. In our theoretical results, the Biot number and the evaporating velocity play a major role in the stability of the vapor-liquid system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The static and dynamic instabilities of a torsional MEMS/NEMS actuator caused by capillary effects are studied, respectively. An instability number, eta, is defined, and the critical gap distance, g(cr), between the mainplate and the substrate is derived. According to the values of eta and g, the instability criteria of the actuator are presented. The dimensionless motion equation of the MEMS/NEMS torsional actuator is derived when it makes nonlinear oscillation under capillary force. The qualitative analysis of the nonlinear equation is made, and the phase portraits are presented on the phase plane. In addition, the bifurcation phenomena in the system are also analyzed. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To uncover the physical origin of shear-banding instability in metallic glass (MG), a theoretical description of thermo-mechanical deformation of MG undergoing one-dimensional simple shearing is presented. The coupled thermo-mechanical model takes into account the momentum balance, the energy balance and the dynamics of free volume. The interplay between free-volume production and temperature increase being two potential causes for shear-banding instability is examined on the basis of the homogeneous solution. It is found that the free-volume production facilitates the sudden increase in the temperature before instability and vice versa. A rigorous linear perturbation analysis is used to examine the inhomogeneous deformation, during which the onset criteria and the internal length and time scales for three types of instabilities, namely free-volume softening, thermal softening and coupling softening, are clearly revealed. The shear-banding instability originating from sole free-volume softening takes place easier and faster than that due to sole thermal softening, and dominates in the coupling softening. Furthermore, the coupled thermo-mechanical shear-band analysis does show that an initial slight distribution of local free volume can incur significant strain localization, producing a shear band. During such a localization process, the local free-volume creation occurs indeed prior to the increase in local temperature, indicating that the former is the cause of shear localization, whereas the latter is its consequence. Finally, extension of the above model to include the shear-induced dilatation shows that such dilatation facilitates the shear instability in metallic glasses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims at investigating the size-dependent self-buckling and bending behaviors of nano plates through incorporating surface elasticity into the elasticity with residual stress fields. In the absence of external loading, positive surface tension induces a compressive residual stress field in the bulk of the nano plate and there may be self-equilibrium states corresponding to the plate self-buckling. The self-instability of nano plates is investigated and the critical self-instability size of simply supported rectangular nano plates is determined. In addition, the residual stress field in the bulk of the nano plate is usually neglected in the existing literatures, where the elastic response of the bulk is often described by the classical Hooke’s law. The present paper considered the effect of the residual stress in the bulk induced by surface tension and adopted the elasticity with residual stress fields to study the bending behaviors of nano plates without buckling. The present results show that the surface effects only modify the coefficients in corresponding equations of the classical Kirchhoff plate theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computational simulation is conducted to investigate the influence of Rayleigh-Taylor instability on liquid propellant reorientation flow dynamics for the tank of CZ-3A launch vehicle series fuel tanks in a low-gravity environment. The volume-of-fluid (VOF) method is used to simulate the free surface flow of gas-liquid. The process of the liquid propellant reorientation started from initially flat and curved interfaces are numerically studied. These two different initial conditions of the gas-liquid interface result in two modes of liquid flow. It is found that the Rayleigh-Taylor instability can be reduced evidently at the initial gas-liquid interface with a high curve during the process of liquid reorientation in a low-gravity environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of shaped laser pulses with plasmas is studied in a strict theoretical framework without adopting the slow-varying envelope approximation (SVEA). Any physical quantities involved in the interaction are denoted as a summation of different real quantities of respective phases. The relationships among the phases of those real quantities and their moduli are strictly analyzed. Such strict analyses lead to a more exact equation set for the three-dimensional envelope of the laser pulse, which is not based on SVEA. Based on this equation set, self-focusing, Raman, and modulation instabilities could be discussed in a unified framework. The solutions of this equation set for the laser envelope reveal many possible multicolor laser modes in plasmas. The energy and the shape of a pulse determine its propagation through plasmas in a multicolor mode or in a monochromic mode. A global growth rate is introduced to measure the speed of the transition from the monochromic mode in vacuum to a possible mode in plasmas. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theoretical model of direct diffraction phase-contrast imaging with partially coherent x-ray source is expressed by an operator of multiple integral. It is presented that the integral operator is linear. The problem of its phase retrieval is described by solving an operator equation of multiple integral. It is demonstrated that the solution of the phase retrieval is unstable. The numerical simulation is performed and the result validates that the solution of the phase retrieval is unstable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a feedback control scheme that designs time-dependent laser-detuning frequency to suppress possible dynamical instability in coupled free-quasibound-bound atom-molecule condensate systems. The proposed adaptive frequency chirp with feedback is shown to be highly robust and very efficient in the passage from an atomic to a stable molecular Bose-Einstein condensate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With a series of supportive experimental phenomena as induced by ion beam bombardment, energetic beaminduced athermal activation process in Si is demonstrated. This is correlated with phenomena induced by ultrafast energy exchange in condensed matter in general. A critical modelling is presented on the above process and a universal concept: the ultrafast energy exchange-induced soft mode of phonons and the lattice instability in condensed matter are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the Klein–Gordon–Zakharov system with different-degree nonlinearities in two and three space dimensions. Firstly, we prove the existence of standing wave with ground state by applying an intricate variational argument. Next, by introducing an auxiliary functional and an equivalent minimization problem, we obtain two invariant manifolds under the solution flow generated by the Cauchy problem to the aforementioned Klein–Gordon–Zakharov system. Furthermore, by constructing a type of constrained variational problem, utilizing the above two invariant manifolds as well as applying potential well argument and concavity method, we derive a sharp threshold for global existence and blowup. Then, combining the above results, we obtain two conclusions of how small the initial data are for the solution to exist globally by using dilation transformation. Finally, we prove a modified instability of standing wave to the system under study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a comprehensive study of the one-dimensional modulation instability of broad optical beams in biased photo refractive-photovoltaic crystals under steady-state conditions. We obtain the one-dimensional modulation instability growth rate by globally treating the space-charge field and by considering distinction between values of Eo in nonlocal effects and local effects in the space-charge field, where Eo is the field constant correlated with terms in the space-charge field, which depends on the external bias field, the bulk photovoltaic effect, and the ratio of the optical beam's intensity to that of the dark irradiance. The one-dimensional modulation instability growth rate in local effects can be determined from that in nonlocal effects. When the bulk photovoltaic effect is neglectable, irrespective of distinction between values of Eo in nonlocal effects and local effects in the space-charge field, the one-dimensional modulation instability growth rates in nonlocal effects and local effects are those of broad optical beams studied previously in biased photorefractive-nonphotovoltaic crystals. When the external bias field is absent, the one-dimensional modulation instability growth rates in nonlocal effects and local effects predict those of broad optical beams in open- and closed-circuit photorefractive-photovoltaic crystals. (c) 2004 Elsevier B.V. All rights reserved.