114 resultados para vulnerability factor
Resumo:
The heme-regulated initiation factor 2 alpha kinase (HRI) is acknowledged to play an important role in translational shutoff in reticulocytes in response to various cellular stresses. In this study, we report its homologous cDNA cloning and characterization from cultured flounder embryonic cells (FEC) after treatment with UV-inactivated grass carp haemorrhagic virus (GCHV). The full-length cDNA of Paralichthys olivaceus HRI homologue (PoHRI) has 2391 bp and encodes a protein of 651 amino acids. The putative PoHRI protein exhibits high identity with all members of eIF2 alpha kinase family. It contains 12 catalytic subdomains located within the C-terminus of all Ser/Thr protein kinases, a unique kinase insertion of 136 amino acids between subdomains IV and V, and a relatively conserved N-terminal domain (NTD). Upon heat shock, virus infection or Poly PC treatment, PoHRI mRNA and protein are significantly upregulated in FEC cells but show different expression patterns in response to different stresses. In healthy flounders, PoHRI displays a wide tissue distribution at both the mRNA and protein levels. These results indicate that PoHRI is a ubiquitous eIF2a kinase and might play an important role in translational control over nonheme producing FEC cells under different stresses. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Follicle consists of an oocyte and a lot of surrounding follicular cells, and significant interactions exist between the oocyte and the somatic cells. In this study, a novel cDNA has been screened from a subtractive cDNA library between tail bud embryos and blastula embryos in the protogynous hermaphrodite orange-spotted grouper (Epinephelus coioides). Its full-length cDNA is 821 bp, and has an ORF of 414 by for encoding a peptide of 137 aa, which shows 38%, 37%, 33%, and 33% homology with 4 putative proteins screened from zebrafish (Danio rerio). Conserved domain search in NCBI reveals a single C2 domain existing in the C2 domain superfamily proteins, and has only 7 beta strands in comparison with 8 beta strands of C2 domains in other C2 domain superfamily proteins. Artificial sex reversal, RT-PCR analysis and Western blot detection demonstrated ovary-specific expression of the C2 domain factor, and therefore the novel gene was designated as E. coioides ovary-specific C2 domain factor, EcOC2 factor. Moreover, predominant expression of EcOC2 factor was further revealed in grouper mature ovary, and its strong immunofluorescence signals were located between granulosa cells and oocyte zona radiata in grouper mature follicles. The data indicate that the novel EcOC2 factor might be a main component that associates between granulosa cells and the oocyte during oocyte maturation, and might play significant roles in regulating oocyte maturation and ovulation. Further studies on its developmental behaviour and physiological functions will elucidate the interactions between oocyte and the surrounding somatic cells and the underlying molecular mechanisms. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
Pigment epithelium-derived factor (PEDF) is acknowledged to be a non-inhibitory member of the serine protease inhibitor (serpin) superfamily, with antiangiogenesis, and neuroprotective and immumoregulatory function, mainly in the tissues of nervous system. Here, A PEDF gene homolog, Paralichthys olivaceus PEDF (PoPEDF), was isolated from flounder embryonic cells (FEC) treated with UV-inactivated Grass carp hemorrhage virus (GCHV) and subsequently identified as a differentially expressed gene. The full length of PoPEDF cDNA is 1803 bp with an open reading frame of 1212 bp encoding a 403-amino-acid protein. This deduced protein contains an N-terminal signal peptide, a glycosylation site, a consensus serpin motif, and a 34-mer and a 44-mer fragment, all of which are very conserved in the PEDF family. PoPEDF gene exhibits a conserved exon-intron arrangement with 8 exons and 7 introns. This conserved evolutionary relationship was further confirmed by a phylogenetic analysis, where fish PEDFs and mammalian members formed a well-supported clade. Constitutive expression of PoPEDF was widely detected in many tissues. In response to UV-inactivated GCHV or poly(I:C), PEDF mRNA was upregulated in FEC cells with time. This is the first report on the transcriptional induction of PEDF in virally infected cells. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
Interferon (IFN) can induce an antiviral state via interferon-regulatory transcription factors (IRFs), which bind to and control genes directed by the interferon-stimulated response element (ISRE). Here we describe a fish IRF, termed CaIRF7, cloned from a subtractive cDNA library which is constructed with mRNAs obtained from crucian carp (Carassius auratus L.) blastulae embryonic (CAB) cells infected by UV-inactivated GCHV and mock-infected cells. CaIRF7 cDNA was found to be 1816 bp in length, with a 42 bp 5' UTR and a 508 bp 3' UTR. The open reading frame translates into 421 amino acids in which a DNA-binding domain (DBD) containing the repeated tryptophan motif and IRFs association domain have been identified. Like chicken GgIRF3, CaIRF7 was most similar to mammalian IRF7 with 27 to 30% identity overall and some 37% identity in their DBDs. A single transcript of 1.9 kb was detected in virally induced CAB cells by virtual Northern blotting. RT-PCR analysis revealed a wide tissue distribution of CaIRF7 constitutive expression, with detectable transcript in non-infected CAB cells and various tissues of healthy crucian carp. In addition, CaIRF7 expression was differentially increased by stimulation of the CAB cells with active GCHV, UV-inactivated GCHV or CAB IFN, indicating that the activation of CaIRF7 was directly regulated by IFN. (C) 2003 Published by Elsevier Ltd.
Resumo:
The natural reproduction of grass carp, black carp, silver carp, and bighead will be affected adversely by the Three Gorges Project in the Yangtze River. One of the methods to save the fish is to regulate the water levels, keeping them suited for the species to spawn. Nine factors associated with the scale of larvae-flood of the four species are classified into five levels, and the ranges of these factors producing larvae-floods are given by using the "factor-criteria system reconstruction analysis" method. Moderate beginning water levels and flow, with high daily increases in the rate of water level and flow, and a long duration of water level rising are important for the production of a large larvae-flood.
Resumo:
The enhancement of quality factor for TE whispering-gallery modes is analyzed for three-dimensional microcylinder resonators based on the destructive interference between vertical leakage modes. In the microcylinder resonator, the TE whispering-gallery modes can couple with vertical propagation modes, which results in vertical radiation loss and low quality factors. However, the vertical loss can be canceled by choosing appropriate thickness of the upper cladding layer or radius of the microcylinder. A mode quality factor increase by three orders of magnitude is predicted by finite-difference time-domain simulation. Furthermore, the condition of vertical leakage cancellation is analyzed.
Resumo:
With the help of time resolved magneto-optic Kerr rotation measurements, the optically induced spin precession in heavily doped diluted magnetic semiconductor Ga0.937Mn0.063 As was observed. It was found that the effective g factor increases with increasing magnetic field, which is attributed to the magnetic-field-induced increase of the density of the non-localized holes. Those free holes will couple with the localized magnetic ions by p-d interactions, leading to the formation of spontaneous magnetization in Ga0.937Mn0.063As, which in turn to the enhancement of the effective g factor.
Resumo:
The magnetic field dependence of filling factors has been investigated on InP based In-0.53 Ga0.47As/In-0.52 Al-0.48 As quantum well samples with two occupied subbands by means of magnetotransport measurements at the temperature of 1.5 K in a magnetic field range of 0 to 13 T. Under the condiction that Laundau-level broadening is larger than the spin splitting of each subband, filling factors are even when the splitting energy of two subbands is an integer multiple of the cyclotron energy, i. e. Delta E-21 = khw(c). If the splitting energy of two subbands is half of an odd interger multiple of the cyclotron erergy, i. e. Delta E-21 = (2 k + 1) hw(c) /2, the filling factor is odd.
Resumo:
Time resolved magneto-optic Kerr rotation measurements of optically induced spin quantum beats are performed on heavily doped bulk (Ga,Mn)As diluted magnetic semiconductors (DMS). An effective g-factor of about 0.2-0.3 over a wide range of temperature for both as-grown and annealed (Ga,Mn)As samples is obtained. A larger effective g-factor at lower temperature and an increase of the spin relaxation with increasing in-plane magnetic field are observed and attributed to the stronger p-d exchange interaction between holes and the localized magnetic ion spins, leading to a larger Zeeman splitting and heavy-hole-light-hole mixing. An abnormal dip structure of the g-factor in the vicinity of the Curie temperature suggests that the mean-field model is insufficient to describe the interactions and dynamics of spins in DMS because it neglects the short-range spin correlation effect. (c) 2008 American Institute of Physics.
Resumo:
The choice of the etching depth for semiconductor microcavities is a compromise between a high Q factor and a difficult technique in a practical fabricating process. In this paper, the influences of the etching depth on mode Q factors for mid-infrared quantum cascade microcylinder and microsquare lasers around 4.8 and 7.8 mu m are simulated by three-dimensional (3D) finite-difference time-domain (FDTD) techniques. For the microcylinder and the microsquare resonators, the mode Q factors of the whispering-gallery modes (WGMs) increase exponentially and linearly with the increase in the etching depth, respectively Furthermore, the mode Q factors of some higher order transverse WGMs may be larger than that of the fundamental transverse WGM in 3D microsquares. Based on the field distribution of the vertical multilayer slab waveguide and the mode Q factors versus the etching depth, the necessary etching depth is chosen at the position where the field amplitude is 1% of the peak value of the slab waveguide. In addition, the influences of sidewall roughness on the mode Q factors are simulated for microsquare resonators by 2D FDTD simulation. (C) 2009 Optical Society of America
Resumo:
We report on the investigation of electron spin quantum beats at room temperature in GaAsN thin films by time-resolved Kerr rotation technique. The measurement of the quantum beats, which originate from the Larmor precession of electron spins in external transverse magnetic field, yields an accurate determination of the conduction electron g factor. We show that the g factor of GaAs1-xNx thin films is significantly changed by the introduction of a small nitrogen fraction.
Resumo:
Confinement factor and absorption loss of AlInGaN based multiquantum well laser diodes (LDs) were investigated by numerical simulation based on a two-dimensional waveguide model. The simulation results indicate that an increased ridge height of the waveguide structure can enhance the lateral optical confinement and reduce the threshold current. For 405 nm violet LDs, the effects of p-AlGaN cladding layer composition and thickness on confinement factor and absorption loss were analyzed. The experimental results are in good agreement with the simulation analysis. Compared to violet LD, the confinement factors of 450 nm blue LD and 530 nm green LD were much lower. Using InGaN as waveguide layers that has higher refractive index than GaN will effectively enhance the optical confinement for blue and green LDs. The LDs based on nonpolar substrate allow for thick well layers and will increase the confinement factor several times. Furthermore, the confinement factor is less sensitive to alloys composition of waveguide and cladding layers, being an advantage especially important for ultraviolet and green LDs.
Resumo:
The quality factors of modes in square resonators are calculated based on the far-field emission of the analytical field distribution. The obtained quality factors are in reasonable agreement with those calculated by the finite-difference time-domain (FDTD) technique and Pade approximation method. The emission power in the square diagonal directions for whispering-gallery-like modes in square resonators is zero due to the interference cancellation caused by the odd field distributions relative to the diagonal mirror planes, so they have larger quality factors than the modes with even field distribution.
Resumo:
Free spectral range of whispering-gallery (WG)-like modes in a two-dimensional (2D) square microcavity is found to be twice that in a 2D circular microcavity. The quality factor of the WG-like mode with the low mode number in a 2D square microcavity, calculated by the finite-difference time-domain (FDTD) technique and the Pade approximation method, is found to exceed that of the WG mode in 2D circular microcavity with the same cavity dimension and close mode wavelength.
Resumo:
Modes in rectangular resonators are analyzed and classified according to symmetry properties, and quality factor (Q-factor) enhancement due to mode coupling is observed. In the analysis, mode numbers p and q are used to denote the number of wave nodes in the direction of two orthogonal sides. The even and odd mode numbers correspond to symmetric and antisymmetric field distribution relative to the midlines of sides, respectively. Thus, the modes in a rectangle resonator can be divided into four classes according to the parity of p and q. Mode coupling between modes of different classes is forbidden; however, anti-crossing mode coupling between the modes in the same class exists and results in new modes due to the combination of the coupled modes. One of the combined modes has very low power loss and high Q-factor based on far-field emission of the analytical field distribution, which agrees well with the numerical results of the finite-difference time-domain (FDTD) simulation. Both the analytical and FDTD results show that the Q-factors of the high Q-factor combined modes are over one order larger than those of the original modes. Furthermore, the general condition required to achieve high-Q modes in the rectangular resonator is given based on the analytical solution.