182 resultados para vacuum polarization
Resumo:
Photoluminescence spectrum of Ce:YAG single crystal was studied employing vacuum ultraviolet (VUV) synchrotron radiation. Intrinsic absorption edge at about 52,000 cm(-1) was observed in the absorption spectrum. From the VUV excitation spectrum, the energy of the highest d-component of 53,191 cm(-1) (188 nm) for the Ce3+ ions in YAG was obtained at 300 K. The disappearance of the third 5d level at 37,735 cm(-1) (265 nm) in absorption and excitation spectra in our samples may be due to the impurity Fe3+ ions absorption. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A method for the control of polarization for a broadband dichroic filter was reported and some design examples were elaborated. This method could be applied over a wide range of wavelengths and a wide range of polarizations in the transmission region. A nonpolaiizing broadband dichroic filter and a broadband dichroic filter with certain polarization were designed and fabricated by electron beam evaporation with ion beam assisted deposition. The experimental spectral performances showed good agreement with their theoretical curves. In addition, the application of the method was discussed. (c) 2007 Optical Society of America
Resumo:
We investigate the influence of vacuum organic contaminations on laser-induced damage threshold (LIDT) of optical coatings. Anti-reflective (AR) coatings at 1064 nm made by Ta2O5/SiO2 are deposited by the ion beam sputtering method. The LIDTs of AR coatings are measured in vacuum and in atmosphere, respectively. It is exhibited that contaminations in vacuum are easily to be absorbed onto optical surface because of lower pressure, and they become origins of damage, resulting in the decrease of LIDT from 24.5 J/cm(2) in air to 15.7 J/cm(2) in vacuum. The LIDT of coatings in vacuum has is slightly changed compared with the value in atmosphere after the organic contaminations are wiped off. These results indicate that organic contaminations are the main reason of the LIDT decrease in vacuum. Additionally, damage morphologies have distinct changes from vacuum to atmosphere because of the differences between the residual stress and thermal decomposability of filmy materials.
Resumo:
Based on the paraxial vectorial theory of beams propagating in uniaxially anisotropic media, we have derived the analytical propagation equations of hollow Gaussian beams (HGBs) in uniaxial crystals, and given the typical numerical example to illustrate our analytical results. Due to the anisotropy crystals, the ordinary and extraordinary beams originated by incident HGBs propagate with different diffraction lengths, thus the linear polarization state and axial symmetry of incident HGBs do not remain during propagating in crystals. (c) 2007 Published by Elsevier B.V.
Resumo:
The influence of organic contamination in vacuum on the laser-induced damage threshold (LIDT) of coatings is studied. TiO2/SiO2 dielectric mirrors with high reflection at 1064 nm are deposited by the electron beam evaporation method. The LIDTs of mirrors are measured in vacuum and atmosphere, respectively. It is found that the contamination in vacuum is easily attracted to optical surfaces because of the low pressure and becomes the source of damage. LIDTs of mirrors have a little change in vacuum compared with in atmosphere when the organic contamination is wiped off. The results indicate that organic contamination is a significant reason to decrease the LIDT. N-2 molecules in vacuum can reduce the influence of the organic contaminations and prtectect high reflectance coatings. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
An in vitro assay was used to examine the effect of Bothriocephalus acheilognathi Yamaguti, 1934 (Cestoda: Pseudophyllidea) on the polarization response of pronephric leucocytes of carp, Cyprinus carpio. Leucocytes, isolated from naive, naturally-infected fish and carp injected intraperitoneally with cestode extracts, were exposed to parasite extracts (protein concentrations 0-10.0 mu g ml(-1)), for up to 24 h in the presence or absence of carp serum. In general, polarization responses of the pronephric leucocytes, primarily neutrophils and eosinophils, increased with incubation time although there was no significant difference in the response induced by the different protein concentrations. Differences in the polarization response were, however, observed in naive, naturally infected and injected fish and the cells responded differently in the presence and absence of carp serum. In the absence of carp serum the polarization response of pronephric leucocytes in vitro was significantly reduced with cells obtained from injected and naturally infected fish compared with those obtained from naive carp. This suppression of leucocyte migration was however reduced by the addition of carp serum to the in vitro system. The role of this interaction between the possible suppression of polarization induced by the parasite and stimulation by serum is discussed.
Resumo:
It is revealed from first-principles calculations that polarization-induced asymmetric distribution of oxygen vacancies plays an important role in the insulating behavior at p-type LaAlO3/SrTiO3 interface. The formation energy of the oxygen vacancy (V-O) is much smaller than that at the surface of the LaAlO3 overlayer, causing all the carriers to be compensated by the spontaneously formed V-O's at the interface. In contrast, at an n-type interface, the formation energy of V-O is much higher than that at the surface, and the V-O's formed at the surface enhance the carrier density at the interface. This explains the puzzling behavior of why the p-type interface is always insulating but the n-type interface can be conducting.
Resumo:
We report on normal incidence p-i-n heterojunction photodiodes operating in the near-infrared region and realized in pure germanium on planar silicon substrate. The diodes were fabricated by ultrahigh vacuum chemical vapor deposition at 600 degrees C without thermal annealing and allowing the integration with standard silicon processes. Due to the 0.14% residual tensile strain generated by the thermal expansion mismatch between Ge and Si, an efficiency enhancement of nearly 3-fold at 1.55 mu m and the absorption edge shifting to longer wavelength of about 40 nm are achieved in the epitaxial Ge films. The diode with a responsivity of 0.23 A/W at 1.55 mu m wavelength and a bulk dark current density of 10 mA/cm(2) is demonstrated. These diodes with high performances and full compatibility with the CMOS processes enable monolithically integrating microphotonics and microelectronics on the same chip.
Resumo:
We present the design and the simulation of an ultracompact high efficiency polarization beam splitter (PBS) based on the properties of the light waves propagating in straight waveguide and composite structure photonic crystal. The splitting properties of the PBS are numerically simulated and analyzed by using the plane wave expansion (PWE) method and finite difference time domain (FDTD) method. The PBS consists of three parts, namely, input waveguide, beam structure and output waveguide. It is shown that a high efficiency and a large separating angle for TE mode and TM mode can be achieved. Owing to these excellent features, including small size and high rate, the PBS makes a promising candidate in the future photonic integrated circuits.