132 resultados para the parabolized stability equations (PSE)
Resumo:
Direct numerical simulation of transition How over a blunt cone with a freestream Mach number of 6, Reynolds number of 10,000 based on the nose radius, and a 1-deg angle of attack is performed by using a seventh-order weighted essentially nonoscillatory scheme for the convection terms of the Navier-Stokes equations, together with an eighth-order central finite difference scheme for the viscous terms. The wall blow-and-suction perturbations, including random perturbation and multifrequency perturbation, are used to trigger the transition. The maximum amplitude of the wall-normal velocity disturbance is set to 1% of the freestream velocity. The obtained transition locations on the cone surface agree well with each other far both cases. Transition onset is located at about 500 times the nose radius in the leeward section and 750 times the nose radius in the windward section. The frequency spectrum of velocity and pressure fluctuations at different streamwise locations are analyzed and compared with the linear stability theory. The second-mode disturbance wave is deemed to be the dominating disturbance because the growth rate of the second mode is much higher than the first mode. The reason why transition in the leeward section occurs earlier than that in the windward section is analyzed. It is not because of higher local growth rate of disturbance waves in the leeward section, but because the growth start location of the dominating second-mode wave in the leeward section is much earlier than that in the windward section.
Resumo:
A novel finite volume method has been presented to solve the shallow water equations. In addition to the volume-integrated average (VIA) for each mesh cell, the surface-integrated average (SIA) is also treated as the model variable and is independently predicted. The numerical reconstruction is conducted based on both the VIA and the SIA. Different approaches are used to update VIA and SIA separately. The SIA is updated by a semi-Lagrangian scheme in terms of the Riemann invariants of the shallow water equations, while the VIA is computed by a flux-based finite volume formulation and is thus exactly conserved. Numerical oscillation can be effectively avoided through the use of a non-oscillatory interpolation function. The numerical formulations for both SIA and VIA moments maintain exactly the balance between the fluxes and the source terms. 1D and 2D numerical formulations are validated with numerical experiments. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
Unlike previous mechanical actuator loading methods, in this study, a hydrodynamic loading method was employed in a flow flume for simulating ocean currents induced submarine pipeline stability on a sandy seabed. It has been observed that, in the process of pipeline losing lateral stability in currents, there usually exist three characteristic times: (1) onset of sand scour; (2) slight lateral displacement of pipeline; and (3) breakout of pipeline. An empirical linear relationship is established between the dimensionless submerged weight of pipeline and Froude number for describing pipeline lateral stability in currents, in which the current-pipe-soil coupling effects are reflected. Scale effects are examined with the method of "modeling of models," and the sand particle size effects on pipeline stability are also discussed. Moreover, the pipeline stability in currents is compared with that in waves, which indicates that the pipeline laid directly upon the sandy seabed is more laterally stable in currents than in waves.
Resumo:
The motion of a single spherical small bubble due to buoyancy in the ideal fluid with waves is investigated theoretically and experimentally in this article. Assuming that the bubble has no effect on the wave field, equations of a bubble motion are obtained and solved. It is found that the nonlinear effect increases with the increase of the bubble radius and the rising time. The rising time and the motion orbit are given by calculations and experiments. When the radius of a bubble is smaller than 0.5mm and the distance from the free surface is greater than the wave height, the results of the present theory are in close agreement with measurements.
Resumo:
According to the experimental results, there exist large-scale coherent structures in the outer region of a turbulent boundary layer, which have been studied by many authors.As experimental results, Antonia (1990) showed the phase- aver aged streamlines and isovorticity lines of the large-scale coherent structures in a turbulent boundary layer for different Reynolds numbers. Based on the hydrodynamic stability theory, the 2-D theoretical model for the large-scale structures was proposed by Luo and Zhou, in which the eddy viscosity was defined as a complex function of the position in the normal direction. The theoretical results showed in ref. were in agreement with those in ref. However, there were two problems in the results. One is that in the experimental results, there were divergent focuses between two saddle points in the streamlines, but in the theoretical results, there were centers. The other is that the stretched parts of the isovorticity lines appear at the location of centers in the theoretical results, while in the experimental results they located somewhere between the focuses and saddle points. The reason is that the computations were based on a 2-D model.
Resumo:
The coherent structure in two-dimensional mixing layers is simulated numerically with the compressible Navier-Stokes equations. The Navier-Stokes equations are discretized with high-order accurate upwind compact schemes. The process of development of flow structure is presented: loss of stability, development of Kelvin-Helmholtz instability, rolling up and pairing. The time and space development of the plane mixing layer and influence of the compressibility are investigated.
Resumo:
Based on the principle given in nonlinear diffusion-reaction dynamics, a new dynamic model for dislocation patterning is proposed by introducing a relaxation time to the relation between dislocation density and dislocation flux. The so-called chemical potential like quantities, which appear in the model can be derived from variation principle for free energy functional of dislocated media, where the free energy density function is expressed in terms of not only the dislocation density itself but also their spatial gradients. The Linear stability analysis on the governing equations of a simple dislocation density shows that there exists an intrinsic wave number leading to bifurcation of space structure of dislocation density. At the same time, the numerical results also demonstrate the coexistence and transition between different dislocation patterns.
Resumo:
A numerical study of turbulent flow in a straight duct of square cross-section is made. An order-of-magnitude analysis of the 3-D, time-averaged Navier-Stokes equations resulted in a parabolic form of the Navier-Stokes equations. The governing equations, expressed in terms of a new vector-potential formulation, are expanded as a multi-deck structure with each deck characterized by its dominant physical forces. The resulting equations are solved using a finite-element approach with a bicubic element representation on each cross-sectional plane. The numerical integration along the streamwise direction is carried out with finite-difference approximations until a fully-developed state is reached. The computed results agree well with other numerical studies and compare very favorably with the available experimental data. One important outcome of the current investigation is the interpretation analytically that the driving force of the secondary flow in a square duct comes mainly from the second-order terms of the difference in the gradients of the normal and transverse Reynolds stresses in the axial vorticity equation.
Resumo:
The discrete vortex method is not capable of precisely predicting the bluff body flow separation and the fine structure of flow field in the vicinity of the body surface. In order to make a theoretical improvement over the method and to reduce the difficulty in finite-difference solution of N-S equations at high Reynolds number, in the present paper, we suggest a new numerical simulation model and a theoretical method for domain decomposition hybrid combination of finite-difference method and vortex method. Specifically, the full flow. field is decomposed into two domains. In the region of O(R) near the body surface (R is the characteristic dimension of body), we use the finite-difference method to solve the N-S equations and in the exterior domain, we take the Lagrange-Euler vortex method. The connection and coupling conditions for flow in the two domains are established. The specific numerical scheme of this theoretical model is given. As a preliminary application, some numerical simulations for flows at Re=100 and Re-1000 about a circular cylinder are made, and compared with the finite-difference solution of N-S equations for full flow field and experimental results, and the stability of the solution against the change of the interface between the two domains is examined. The results show that the method of the present paper has the advantage of finite-difference solution for N-S equations in precisely predicting the fine structure of flow field, as well as the advantage of vortex method in efficiently computing the global characteristics of the separated flow. It saves computer time and reduces the amount of computation, as compared with pure N-S equation solution. The present method can be used for numerical simulation of bluff body flow at high Reynolds number and would exhibit even greater merit in that case.
Resumo:
A mantle plume is understood as a hot, narrow, upwelling flow in the earth's mantle and accompanied by an efficient transfer of mass and energy from deep to upper layer of the earth. The cylindrical plume in earth's mantle plays an important role in explaining the origin of the surface hot spots and linear island chains. From the basic hydrodynamical equations, the detailed mechanical and thermal structure of a cylindrical plume of Newtouian fluids with temperature and pressure-dependent viscosity are given in the present paper. For two sets of rheological parameters the radial profiles of upward velocity, temperature and viscosity in the plume and radiuses of the plume at various depths have been calculated.
Resumo:
利用抛物化稳定方程(PSE)特征分析得知,原始扰动量的线性和非线性PSE整体来说为抛物型.利用PSE的次特征分析证明,对速度Ⅳ,在亚音速和跨音速区,线性PSE分别为椭圆型和双曲一抛物型;对速度u+口,在亚音速和跨音速区,菲线性PSE分别为椭圆型和双曲.抛物型(其中, U和“分别为主流方向的扰动和未扰流速度分量).结论表明,流体运动稳定性方程组的“抛物化”简化。仅把信息的对流扩散传播抛物化,而保留了信息的对流扰动传播特性,PSE实质上是扩散抛物化稳定性方程组.根据特征次特征理论提出了消除PSE剩余椭圆特性的方法,所得结论对线性PSE已有结论一致,并给出了Mach数的影响.同时,进一步给出了消除非线性PSE的剩余椭圆特性的方法.
Resumo:
特征分析表明:对原始扰动量的抛物化稳定性方程组(PSE),它在亚、超音速区分别具有椭圆和抛物特性,给出PSE特征对马赫数的依赖关系,阐明PSE仅把信息对流-扩散传播特性抛物化,而保留了信息对流-扰动传播特性,因此PSE应称为扩散抛物化稳定性方程(DPSE)。
Resumo:
The high Reynolds number flow contains a wide range of length and time scales, and the flow
domain can be divided into several sub-domains with different characteristic scales. In some
sub-domains, the viscosity dissipation scale can only be considered in a certain direction; in some
sub-domains, the viscosity dissipation scales need to be considered in all directions; in some
sub-domains, the viscosity dissipation scales are unnecessary to be considered at all.
For laminar boundary layer region, the characteristic length scales in the streamwise and normal
directions are L and L Re-1/ 2 , respectively. The characteristic length scale and the velocity scale in
the outer region of the boundary layer are L and U, respectively. In the neighborhood region of
the separated point, the length scale l<
Resumo:
Czochralski (CZ) crystal growth process is a widely used technique in manufacturing of silicon crystals and other semiconductor materials. The ultimate goal of the IC industry is to have the highest quality substrates, which are free of point defect, impurities and micro defect clusters. The scale up of silicon wafer size from 200 mm to 300 mm requires large crucible size and more heat power. Transport phenomena in crystal growth processes are quite complex due to melt and gas flows that may be oscillatory and/or turbulent, coupled convection and radiation, impurities and dopant distributions, unsteady kinetics of the growth process, melt crystal interface dynamics, free surface and meniscus, stoichiometry in the case of compound materials. A global model has been developed to simulate the temperature distribution and melt flow in an 8-inch system. The present program features the fluid convection, magnetohydrodynamics, and radiation models. A multi-zone method is used to divide the Cz system into different zones, e.g., the melt, the crystal and the hot zone. For calculation of temperature distribution, the whole system inside the stainless chamber is considered. For the convective flow, only the melt is considered. The widely used zonal method divides the surface of the radiation enclosure into a number of zones, which has a uniform distribution of temperature, radiative properties and composition. The integro-differential equations for the radiative heat transfer are solved using the matrix inversion technique. The zonal method for radiative heat transfer is used in the growth chamber, which is confined by crystal surface, melt surface, heat shield, and pull chamber. Free surface and crystal/melt interface are tracked using adaptive grid generation. The competition between the thermocapillary convection induced by non-uniform temperature distributions on the free surface and the forced convection by the rotation of the crystal determines the interface shape, dopant distribution, and striation pattern. The temperature gradients on the free surface are influenced by the effects of the thermocapillary force on the free surface and the rotation of the crystal and the crucible.
Resumo:
The nonlinear dynamic responses of the tensioned tether subjected to combined surge and heave motions of floating platform are investigated using 2-D nonlinear beam model. It is shown that if the transverse-axial coupling of nonlinear beam model and the combined surge-heave motions of platform are considered, the governing equation is not Mathieu equation any more, it becomes nonlinear Hill equation. The Hill stability chart is obtained by using the Hill's infinite determinant and harmonic balance method. A parameter M, which is the function of tether length, the surge and heave amplitude of platform, is defined. The Hill stability chart is obviously different from Mathieu stability chart which is the specific case as M=0. Some case studies are performed by employing linear and nonlinear beam model respectively. It can be found that the results differences between nonlinear and linear model are apparent.