60 resultados para the empty self


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Josephson equations for a Bose-Einstein Condensate gas trapped in a double-well potential are derived with the two-mode approximation by the Gross-Pitaevskii equation. The dynamical characteristics of the equations are obtained by the numerical phase diagrams. The nonlinear self-trapping effect appeared in the phase diagrams are emphatically discussed, and the condition EcN > 4E(J) is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Within the framework of Dirac Brueckner-Hartree-Fock (DBHF) approach, we calculate the energy per nucleon, the pressure, the nucleon self-energy, and the single-nucleon energy in the nuclear matter by adopting two different covariant representations for T-matrix. We mainly investigate the influence of different covariant representations on the satisfiable extent of the Hugenholtz-Van Hove (HVH) theorem in the nuclear medium in the framework of DBHF. By adopting the two different covariant representations of T-matrix, the predicted nucleon self-energy shows a quite different momentum and density dependence. Different covariant representations affect remarkably the satisfiable extent of the HVH theorem. By adopting the complete pseudo-vector representation of the T-matrix, HVH theorem is largely violated, which is in agreement with the result in the non-relativistic Brueckner-Hartree-Fock approach and reflects the importance of ground state correlations for single nucleon properties in nuclear medium, whereas by using the pseudoscalar representation, the ground state correlation cannot be shown. It indicates that the complete pseudo-vector presentation is more feasible than the pseudo-scalar one.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We reported a simple method to synthesize gold nanoparticles (NPs) by photoreducing HAuCl4 in acetic acid solution in the presence of type I collagen. It was found that the collagen takes an important role in the formation of gold NPs. The introduction of collagen made the shape of the synthesized gold nanocrystals change from triangular and hexangular gold nanoplates to size-uniform NPs. On the other hand, thanks to the special characters of collagen molecules, such as its linear nanostructure, are positively charged when the pH < 7, and the excellent self-assembly ability, photoreduced gold NPs were assembled onto the collagen chains and formed gold NPs films and networks. A typical probe molecule, 4-aminothiophenol, was used to test the surface-enhanced Raman scattering activity of these gold NPs films and networks and the results indicated good Raman activity on these substrates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coadsorption of ferrocene-terminated alkanethiols (FcCO(2)(CH2)(8)SH, Fc=(mu(5)-C5H5)Fe(mu(5)-C5H4)) with alkylthiophene thiols (2-mercapto-3-n-octylthiophene) yields stable, electroactive self-assembled monolayers on gold. The resulting mixed monolayer provides an energetically favorable hydrophobic surface for the adsorption of the surfactant aggregates in aqueous solution. The adsorptions have been characterized via their effect on the redox properties of ferrocenyl alkanethiols immobilized as minority components in the monolayers and on the interfacial capacitance of the electrode. Surfactant adsorption causes a decrease in the overall capacitance at the electrode and dramatically shifts the redox potential for ferrocene oxidation in a positive or negative direction depending on the identity of the surfactant employed. A structural model is proposed in which the alkane chains of the adsorbed surfactants interdigitate with those of the underlying self-assembled monolayer, leading to the formation of a hybrid bilayer membrane.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The endrohel metallofullerene, Gd@C-82, Gd@C-80, Gd-2@C-80 were synthesized by using K-H method. The technique of two-step of high pressure and high temperature extraction with 1, 3, 5-trimethylbenzene (first step) and pyridine(second step) has been successfully utilized to extract metallofullerene of Gd@C-82 The gas-phase negative ions of fullerenes C-n(n= 60, 70, 78, 82, 84...) and metallofullerene (Gd@C-82) have been studied by the ESI-MS, REC-MS and MALDI-TOF-MS. The differences among the mass spectra of ESI-MS, REC-MS and MALDI-TOF-MS have been observed and explained. In contrast to the empty fullerene C-82 , the metallofullerene Gd@C-82 should have a larger HOMO-LUMO gap. Experimental results suggest that Gd@C-82 is polarized and Gd3+ located in the off-center position of C-82 cage after Gd3+ is trapped into C-82 cage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conventional seismic attribute analysis is not only time consuming, but also has several possible results. Therefore, seismic attribute optimization and multi-attribute analysis are needed. In this paper, Fuyu oil layer in Daqing oil field is our main studying object. And there is much difference between seismic attributes and well logs. So under this condition, Independent Component Analysis (ICA) and Kohonen neural net are introduced to seismic attribute optimization and multi-attribute analysis. The main contents are as follows: (1) Now the method of seismic attribute compression is mainly principal component analysis (PCA). In this article, independent component analysis (ICA), which is superficially related to PCA, but much more powerful, is used to seismic reservoir characterizeation. The fundamental, algorithms and applications of ICA are surveyed. And comparation of ICA with PCA is stydied. On basis of the ne-entropy measurement of independence, the FastICA algorithm is implemented. (2) Two parts of ICA application are included in this article: First, ICA is used directly to identify sedimentary characters. Combined with geology and well data, ICA results can be used to predict sedimentary characters. Second, ICA treats many attributes as multi-dimension random vectors. Through ICA transform, a few good new attributes can be got from a lot of seismic attributes. Attributes got from ICA optimization are independent. (3) In this paper, Kohonen self-organizing neural network is studied. First, the characteristics of neural network’s structure and algorithm is analyzed in detail, and the traditional algorithm is achieved which has been used in seism. From experimental results, we know that the Kohonen self-organizing neural network converges fast and classifies accurately. Second, the self-organizing feature map algorithm needs to be improved because the result of classification is not very exact, the boundary is not quite clear and the velocity is not fast enough, and so on. Here frequency sensitive principle is introduced. Combine it with the self-organizing feature map algorithm, then get frequency sensitive self-organizing feature map algorithm. Experimental results show that it is really better. (4) Kohonen self-organizing neural network is used to classify seismic attributes. And it can be avoided drawing confusing conclusions because the algorithm’s characteristics integrate many kinds of seismic features. The result can be used in the division of sand group’s seismic faces, and so on. And when attributes are extracted from seismic data, some useful information is lost because of difference and deriveative. But multiattributes can make this lost information compensated in a certain degree.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

That the dodecahedral water cluster (DWC) can adsorb dissolved methane molecules, an important phenomenon related to the hydrate nucleation study, has been observed through molecular dynamics simulations, but it has not been explained satisfactorily [Guang-Jun Guo; Yi-Gang Zhang; Hua Liu. J. Phys. Chem. C, 2007, 111, 2595]. In order to explain this phenomenon by using the potential of mean force (PMF) between the DWC and the dissolved methane, we perform several series of constrained molecular dynamics simulations in the methane-water system. The distance between the center of DWC and the methane molecule is constrained from 5 Å to 18 Å by adding 0.2 Å every time. For each fixed distance, we perform 20 independent simulations to improve the statistical precision. We first get the constraint force between the DWC and the dissolved methane in each simulation and then calculate the PMF by integrating these forces. Subsequently, the radial distribution function (RDF) is obtained from the PMF through an equation of statistical mechanics. The results show that the RDF has a sharp peak at about 6.2 Å, successfully explaining why the DWC adsorbs dissolved methane molecules. The preferential binding coefficient is a positive value (=2.05±0.5), indicates that the DWC tends to adsorb dissolved methane rather than water molecules in methane aqueous solutions. The curve of PMF for the DWC encaging a methane almost coincides that for the empty DWC, meaning that it is the DWC rather than the encaged methane who could adsorb dissolved methane molecules. By comparing the curves of PMF for different directions of the DWC relative to the dissolved methane, we find that it is the cage face rather than the cage edge or vertex that plays an essential role when the DWC adsorbing dissolved methane. This research sheds light on the driving force for the methane adsorption, and it is helpful in understanding the nucleation process of methane hydrate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rockmass movement due to mining steep metallic ore body is a considerable question in the surface movement and deformation issue caused by underground mining. Research on coal mining induced rockmass movement and its prediction problem have been performed for a long-term, and have achieved great progress at home and abroad. However, the rockmass movement caused by mining steep metal mine is distinctivly different from coal seam mining.. Existing surface movement laws and deformation prediction methods are not applicable to the rockmass movement caused by mining steep metal mine. So far the home and abroad research to this theory is presently at an early stage, and there isn’t mature theory or practical prediction method, which made a great impact on production. In this paper, the research object—Jinchuan nickel mine, which is typical steep metal mine, characterized by complex geological conditions, developed faults, cracked rockmass, high geostress, and prominent engineering stability problems. In addition, backfill mining method is used in the mine, the features of rockmass movement caused by this mining method are also different from other mining methods. In this paper, the laws of rock mass movement, deformation and destroy mechanism, and its prediction were analyzed based on the collection of data, detailed in-sit engineering geology survey, ground movement monitoring by GPS, theoretical analysis and numerical simulation. According to the GPS monitoring of ground surface movement, ground subsidence basin with apparent asymmetry is developing, the influence scope is larger in the upper faulted block than in the lower faulted block, and the center of ground movement is moving along the upper faulted block direction with increasing depth of mining. During the past half and seven years, the largest settlement has amounted to 1287.5mm, and corresponding horizontal displacement has amounted to 664.6mm. On the ground surface, two fissure belts show a fast-growing trend of closure. To sum up, mining steep metal mine with backfill method also exist the same serious problem of rockmass movement hazards. Fault, as a low intensity zone in rockmass, when it located within the region of mining influence, the change of potential energy mainly consumed in fault deformation associated with rockmass structure surface friction, which is the essence of displacement and stress barrier effects characterized by fault rupture zone. when steep fault located in the tensile deformation region incurred by underground excavation, no matter excavation in hangingwall or in footwall of the fault, there will be additional tensile stress on the vertical fault plane and decrease in the shear strength, and always showing characteristics of normal fault slip, which is the main reason of fault escarpment appeared on the ground surface. The No.14 shaft deformation and failure is triggered by fault activation, which showed with sidewall move, rupture, and break down features as the main form of a concentrated expression of fault effects. The size and orientation of principal stress in surrounding rock changed regularly with mining; therefore, roadway deformation and damage at different stages have different characteristics and distribution models. During the process of mining, low-intensity weak structures surface always showed the most obvious reaction, accompany with surface normal stress decrease and shear strength bring down, to some extent, occurred with relative slide and deformation. Meanwhile, the impact of mining is a relatively long process, making the structure surface effect of roadway deformation and damage more prominent than others under the influence of mining. Roadway surrounding rockmass deformation caused by the change of strain energy density field after excavation mainly belongs to elastic deformation, and the correspondented damage mainly belongs to brittle rupture, in this circumstance, surrounding rockmass will not appear large deformation. The large deformation of surrounding rockmass can only be the deformation associated with structure surface friction or the plastic deformation of itself, which mainly caused by the permanent self-weigh volume force,and long-term effect of mining led to the durability of this deformation Good pitting fill effect and supporting effect of backfill, as well as the friction of rockmass structure surface lead to obvious macro-rockmass movement with long-lag characteristics. In addition, the loss of original intensity and new structure surface arisen increased flexibility in rockmass and fill deformation in structure surface, which made the time required for rockmass potential energy translate into deformation work associated with plastic deformation and structure surface friction consumed much, and to a large extent, eliminated the time needed to do those plastic work during repeated mining, all of which are the fundamental reason of rockmass movement aftereffect more significant than before. Mining steep deposits in high tectonic stress area and in gravity stress area have different movement laws and deformation mechanism. The steep deposit, when the vertical size of the mining areas is smaller than the horizontal size of the orebody, no matter mining in gravity stress area or in high tectonic stress area, they have similar features of ground movement with mining horizontal orebody; contrarily, there will appear double settlement centers on the ground surface under the condition of mining in high tectonic stress area, while there will always be a single center under the other condition. Meanwhile the ground movement lever, scale of mining influence area and macro features of ground movement, deformation and fracture are also different from mining in gravity stress area, and the fundamental reason lies in the impact of orientation of the maximum principal stress on rock movement features in in-site rock stress field. When mining thick and steep deposit, the ground surface movement and deformation characteristic curves are significantly different from excavating the horizontal ore bed and thin steep deposit. According to the features of rockmass movement rate, the development process of mining-induced rockmass movement is divided into three stages: raising stage, steadily stage and gradually decay stage. Considering the actual exploitation situation, GPS monitoring results and macro-characteristics of surface movement, the current subsidence pattern of Jinchuan No.2 mine is in the early stage of development. Based on analysis of surface movement rate, surface subsidence rate increase rapidly when mining in double lever at the same time, and reach its peak until the exploitation model ended. When double lever mining translate into single, production decreased, surface subsidence rate suddenly start to reduce and maintain a relatively low value, and the largest subsidence center will slowly move along with the hangingwall ore body direction with increasing depth of mining, at the same time, the scope and extent of subsidence in footwall ore body will begin magnify, and a sub-settlement center will appear on ground surface, accompanied with the development and closure trend of ground fissure, the surrounding rockmass of shaft and roadway will be confronted to more frequent and severe deformation and failure, and which will have a negative impact on the overall stability of No.2 mine mining. On the premise of continuity of rockmass movement, gray system model can be used in ground rockmass movement prediction for good results. Under the condition of backfill mining step by step, the loose effect of compact status of the hard, broken rockmass led to lower energy release rate, although surrounding rockmass has high elastic energy, loose and damage occurred in the horizontal ore body, which made the mining process safety without any large geological hazards. During the period of mining the horizontal ore body to end, in view of its special “residual support role”, there will be no large scale rockmass movement hazards. Since ground surface movement mainly related to the intensity of mining speed and backfill effect, on the premise of constant mining speed, during the period of mining the horizontal ore body to end, the rate of ground surface rockmass movement and deformation won’t have sudden change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular dynamics simulations were used to study the pressure dependence of the structure and the dynamic properties of forsterite melt (Mg_2SiO_4), diopside melt (CaMgSi_2O_6), anorthite melt (CaAl_2Si_2O_8), jadite melt (NaAlSi_2O_6) and albite melt (NaAlSi3O8) from 0 GPa to 25 GPa at about 2000 K and the following conclusions have been reached. Firstly, the ratio of NBO to T (NBO and T denote the content of non-bridging oxygen and the total content of Si~(4+) and Al~(3+) respectively) is closely related to the pressure and the composition of the melts. It decreases monotonously in forsterite, diopside and anorthite melts while increases at the initial stage and then decreases in jadite and albite melts with increasing pressure. At a fixed pressure, the shear viscosity of the melts decreases with increasing NBO/T and the variation rate is almost 150 times higher in fully polymerized melts than that in de-polymerized melts in comparison with anorthite melts. Secondly, it is generally accepted that the formation of the Si and A1 will promote the diffusion of the network-forming ions. The hypothesis is frequently employed to explain the emergence of the maximum self-diffusion coefficient of the network-forming ions in fully polymerized melts. However, I detected that the pressure corresponding to the peak of the self-diffusion coefficient of the network-forming ions is lower than that corresponding to the maximum content of Si and A1, and that there exists an approximately linear relationship between the self-diffusion coefficient of the ions and the breaking frequency of the bonds under a given pressure, which is different from the present understanding about the mechanism of self-diffusion. Thirdly, the relationship between the self-diffusion coefficient of Si~(4+), Al~(3+) and O~(2-) and the shear viscosity of the melts evolves from the Stokes-Einstein equation and Sutherland-Einstein equation to the Eyring equation with increasing pressure. And the key to obtain self-diffusion coefficient from shear viscosity under difference pressures is to determine A. in the Eyring equation. For Si~(4+) and O~(2-), this could be done using the linear relationship between A, and NBO% in anorthite melts. However, this method is inapplicable in other kinds of melts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The IR spectrum of 4-methyl-3-penten-2-one is interpreted with the aid of normal coordinate calculations within the Onsager self-consistent reaction field (SCRF) model, using a density functional theory (DFT) method at the Becke3LYP/6-31G* level. The solvent effects on the geometry, energy, dipole moment, and vibrational frequencies of 4-methyl-3-penten-2-one in the solution and in the liquid phase are calculated using the Onsager SCRF model. The calculated vibrational frequencies in the liquid-phase are in good agreement with the experimental values. The solvent reaction field has generally weak influence. For the two main bands of C=C and C=O mixed vibrational modes, small frequency shifts (5-6 cm(-1)), but relatively large changes in IR intensities (up to 101 km mol(-1) in the liquid phase) are found. (C) 1999 Elsevier Science BV. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the period of college, an individual matures rapidly in all aspects. College engineering students are the important parts of undergraduates. The state of an individual’s mental health may affect and even decide his future life and work. The level of the student’s self-concept and the kind of coping styles the students adopt are directly related to their mental health. So, it is significant to study the psychological stress, coping and self-concept of college engineering students for the mental health education and research of college engineering students. Based on overviews of former research, with the China College Student Psychological Stress Scale, the Coping Styles Scale and the Tennessee Self-Concept Scale, 559 college engineering students were investigated to explore the characteristics of and the relationship between the psychological stress, coping styles and self-concept of college engineering students. The results showed: 1. The stresses of learning, living and daily hassles were the main psychological stresses of college engineering students. There were significant differences in psychological stress between students from the countryside and those from urban areas, between needy students and non-needy students, between single-parent students and non-single-parent students, among students from different grades, with different academic achievements and of different postgraduate targets, between student party members and non-party members, between student cadres and non-cadres. However, there were no significant differences between male and female, between those from single-child families and from multiple-child families. 2. The coping styles of solving problem, seeking help and rationalization were the main coping styles of college engineering students. There were significant differences in the coping styles between needy students and non-needy students, among students from different grades, with different academic achievements and of different postgraduate targets, between student party members and non-party members, between student cadres and non-cadres. However, there were no significant differences between students from the countryside and from urban areas, between male and female, between single-parent students and non-single-parent students, between those from single-child families and from multiple-child families. 3. The self-concept of college engineering students was positive in general. There were significant differences in self-concept between students from the countryside and those from urban areas, between male and female, between needy students and non-needy students, between single-parent students and non-single-parent students, among students from different grades, with different academic achievements and of different postgraduate targets, between student party members and non-party members, between student cadres and non-cadres. However, there were no significant differences between those from single-child families and from multiple-child families. 4. The psychological stress had significantly negative correlation to the immature coping styles, and had partial correlation to the mature coping styles. Coping style has significant predictability on psychological stress. 5. The positive factors of the self-concept had significantly negative correlation to psychological stress, but self-criticism had positive correlation to psychological stress. There are significant differences between high self-concept students and low self-concept students for psychological stress. Self-concept has significant predictability on psychological stress. 6. The positive factors of the self-concept had significantly negative correlation to the coping styles of self-blame, illusion, avoidance, and rationalization, but had significantly positive correlation to the coping style of solving problem and seeking help. Self-criticism had significantly negative correlation to the coping styles of self-blame, illusion, avoidance, and rationalization. There are significant differences between high self-concept students and low self-concept students for coping styles. Self-concept has significant predictability on coping styles. 7. The self-concept of college engineering students had an effect on psychological stress by coping styles. However, the effect by the immature coping styles was higher than that to the mental health directly, and the effect by the mature and mixed coping styles was slighter than that to the mental health directly. According to the results, improving the college engineering students’ self-concept level and establishing right self-concept, developing the middle school student’ active coping styles and overcoming the negative coping styles are essential and important to the college engineering students’ mental health and provide useful clues for the psychological education of the college engineering students.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As a well-related concept with close relationship, dispositional romantic jealousy (worrying about the romantic relationship will decrease or be threatened because of the rival) is accepted more and more attention. As the first system study on romantic jealousy under Chinese culture, this study use the combinative methods of questionnaire survey and provided situation-imagine design to study the dispositional romantic jealousy and get some conclusions. 1、The structure of the dispositional romantic jealousy in Chinese undergraduate students consist of three factors: suspicion , exclusivity and dependency . The scale of romantic jealousy has good reliability and validity. 2、The dispositional romantic jealousy can well predict the love attitudes and love experiences. The three factors respectively have different relationship with the love attitudes and love experiences. 3、Comparing with the high self-esteem samples, low self-esteem (include explicit self-esteem, and special implicit self-esteem) samples express more dispositional romantic jealousy among some of the three aspects: suspicion , exclusivity and dependency. 4、Those who get high scores on Scale of Social Comparison Orientation have far more remarkable dispositional romantic jealousy than those who get low scores, the difference exits in three factors: suspicion , exclusivity and dependency. 5、The result of SEM tells us that explicit self-esteem and special implicit self-esteem can negetivly predict some of the three factors of the dispositional romantic jealousy. And special implicit self-esteem also can predict the jealous emotional reaction .Social comparison orientation can predict all three factors of the disposition. And all three factors can positively predict jealous emotional reaction. These findings help us identify the structure of the dispositional romantic jealousy and know more about the influence factors of dispositional romantic jealousy. So we can provide an academic reference on the prevention and intervention of the conflicts among marriage and love relationships.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present paper studies the explicit, implicit, and combined (explicit and implicit) self-esteem of troubled youths in comparison to normal youths. Influential family factors are also discussed. The main results of this paper can be summarized as follows: 1. The explicit self-esteem of troubled youths is significantly lower than that of normal youths. 2. In comparison to normal youths, troubled youths are more likely to come from divorced and remarried families, and have parents with lower levels of education; troubled youths also experience significantly greater amounts of physical and sexual abuse and emotional and physical neglect. 3. For troubled youths, the closer they are with their parents,the higher their explicit self-esteem; abuse experiences in childhood significantly predict low explicit self-esteem; and high explicit self-esteem can be predicted by communication, trust, intimacy and enjoyment with their parents. For normal youths, only low explicit self-esteem can be predicted by abuse experiences in childhood. 4. The implicit self-esteem of troubled youths is significantly higher than that of normal youths. 5. The implicit self-esteem of troubled youths is affected by their parents’marrital status; youths from divorced families have higher implicit self-esteem than those from intact families. Low implicit self-esteem in normal youths can be predicted by communication,trust, intimacy and enjoyment with their mothers. 6. Youths with low explicit self-esteem and high implicit self-esteem (LEHI) form the greatest proportion of the total number of troubled youths, and youths with high explicit self-esteem and low implicit self-esteem (HELI) form the greatest proportion of normal youths. Youths with LEHI have the most abuse experiences in childhood, the worst parent-child relationships and the most mental problems; In contrast, youth with HELI have the least abuse experiences, the best parent-child relationships and the least mental problems of the four categories of combined self-esteem. Furthermore, the combined self-esteem of youths can be predicted by abuse experiences in childhood.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Self-conscious emotions (guilt, shame, embarrassment, pride, etc) are social emotions, and involve complex appraisals of how one’s behavior has been evaluated by the self and other people according to some value standards. Self-conscious emotions play an important role in human life by arousing and regulating human action tendencies, feeling and thoughts, which can promote people to work hard in achievement and task fields, maintain good interpersonal relationship according with social morality and expectation. The present study aimed to examine complex self-conscious emotional understanding capabilities in junior middle school students with and without learning disabilities, how the self-conscious emotions generate, and relationship between self-conscious emotions and self-representation in academic and interpersonal fields. Situational experimental methods were used in this research, and the results would give further supports for learning disabilities intervention. The main results of present research are as follows. 1. The study included 4 parts and 6 experiments. The aim of study 1 was to explore whether juveniles with learning disabilities understood complex self-conscious emotions differently from juveniles without learning disabilities. We surveyed the self-conscious emotions understanding of 37 learning disabilities and 45 non-learning disabilities with the emotional situation stories. The results indicated that the self-conscious emotional recognition in others for learning disabilities was lower than that of non-learning disabilities in different emotional recognition tasks. Moreover, children with learning disabilities were more inclined to recognize emotions in themselves as elemental emotions, however, children without learning disabilities were more inclined to recognize emotions in themselves as self-conscious emotions. 2. The aim of study 2 was to explore the generative mechanism of self-conscious emotions in academic and interpersonal fields with the method of situational experiments, namely to examine whether the self-discrepancy could cause self-conscious emotions for learning disabilities. 84 learning disabilities (in experiment 1) and 80 learning disabilities (in experiment 2) participated in the research, and the results were as follows. (1) Self discrepancy caused participants’ self-conscious emotions effectively in academic and interpersonal fields. One’s own and parents’ perspercive on the actual-ideal self-discrepancy both produced dejection-related emotions (shame、embarrassment) and agitation-related emotions (guilt). (2)In academic fields, children with learning disabilities caused higher level negative self-conscious emotions (embarrassment, shame, and guilt) and lower level positive self-conscious emotion (pride). However, there were no differences of self-conscious emotions for children with and without learning disabilities in non-academic fields. 3. The aim of study 3 was to explore what influence had self-conscious emotions on self-representation for learning disabilities with the method of situational experiments. 57 learning disabilities (in experiment 1) and 67 learning disabilities (in experiment 2) participated in the research, and the results were as follows. (1)The negative self-conscious for learning disabilities could influence their positive or negative academic and positive interpersonal self-representation stability, the ways in which self-evaluation of ability mediate these effects. However, there was no significant effect for the negative self-conscious and self-evaluation of ability predicting negative interpersonal self-representation stability. (2)The stability level of positive academic and interpersonal self-representation for learning disabilities was lower than that of non-learning disabilities. There was no significant difference of the negative interpersonal self-representation stability for children with and without learning disabilities in the positive self-conscious valence condition. However, the stability level of negative interpersonal self-representation for learning disabilities was lower than that of non-learning disabilities in the negative self-conscious valence condition. 4. The aim of study 4 was to explore the intervention effects for self-conscious emotions training course on emotional comprehension cability. 65 learning disabilities (34 in experimental group, and 31 in control group) participated in the research. The results showed that self-conscious emotions course boosted the self-conscious emotions apprehensive level for children with learning disabilities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Self-regulation has recently become an important topic in cognitive and developmental domain. According to previous theories and experimental studies, it is shown that self-regulation consist of both a personality (or social) aspect and a behavioral cognitive aspect of psychology. Self-regulation can be divided into self-regulation personality and self-regulation ability. In the present study researches have been carried out from two perspectives: child development and individual differences. We are eager to explore the characteristics of self-regulation in terms of human cognitive development. In the present study, we chose two groups of early adolescences one with high intelligence and the other with normal intelligence. In Study One Questionnaires were used to compare whether the highly intelligent group had had better self-regulation personality than the normal group. In Study Two experimental psychology tasks were used to compare whether highly intelligent children had had better self-regulation cognitive abilities than their normal peers. Finally, in Study Three we combined the results of Study One and Study Two to further explore the neural mechanisms for highly intelligent children with respect to their good self-regulation abilities. Some main results and conclusions are as follows: (1) Questionnaire results showed that highly intelligent children had better self-regulation personalities, and they got higher scores on the personalities related to self-regulation such as, self-reliance, stability, rule-consciousness. They also got higher scores on self-consciousness which meant that they could know their own self better than the normal children. (2) Among the three levels of cognitive difficulties in self-regulation abilities, the highly intelligent children had faster reaction speed than normal children in the primary self-regulation tasks. In the intermediate self-regulation tasks, highly intelligent children’s inhibition processing and executive processing were both better than their normal peers. In the advanced self-regulation tasks, highly intelligent children again had faster reaction speed and more reaction accuracy than their normal peers when facing with conflict and inconsistency experimental conditions,. Regression model’s results showed that primary and advanced self-regulation abilites had larger predictive power than intermediate self-regualation ability. (3) Our neural experiments showed that highly intelligent children had more efficient neural automatic processing ability than normal children. They also had better, faster and larger neural reaction to novel stimuli under pre-attentional condition which made good and firm neural basis for self-regualation. Highly intelligent children had more mature frontal lobe and pariental functions for inhibition processing and executive processing. P3 component in ERP was closely related to executive processing which mainly activated pariental function. There were two time-periods for inhibition processing—first it was the pariental function and later it was the coordination function of frontal and pariental lobes. While conflict control task had pariental N2 and frontal-pariental P3 neural sources, highly intelligent children had much smaller N2 and shorter P3 latency than normal children. Inconsistency conditions induced larger N2 than conditions without inconsistency, and conditions without inconsistency (or Conflict) induced higher P3 amplitudes than with Inconsistency (or Conflict) conditions. In conclusion, the healthy development of self-regulation was very important for children’s personality and cognition maturity, and self-regulation had its own specific characteristics in ways of presentation and ways of development. Better understanding of self-regulation can further help the exploration of the nature of human intelligence and consciousness.