348 resultados para semi-quantitative RT-PCR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

禾谷孢囊线虫严重影响禾谷类作物的产量,在小麦中由禾谷孢囊线虫引起的产量损失可达30-100%。尤其在澳大利亚、欧洲、印度和中东危害严重,目前禾谷孢囊线虫已成为危害我国作物的主要病源。控制禾谷孢囊线虫的方法主要有:作物轮作、杀线虫剂、寄主抗性等等,其中基因工程方法培育抗线虫小麦品种被认为是最经济有效的方法。分离抗禾谷类孢囊线虫基因对揭示抗性基因结构与功能及其表达调控具有重要意义。 尽管小麦是重要的粮食作物,在小麦中已发现的抗禾谷孢囊线虫的基因很少,而比其近缘属如节节麦、易变山羊草、偏凸山羊草中含有丰富的抗源。目前已鉴定出禾谷孢囊线虫抗性位点Cre,并发现了9个禾谷孢囊线虫抗性基因(Cre1,2, 3, 4, 5, 6, 7, 8, and R) ,其中只有Cre1和Cre8直接从普通小麦中获得。从节节麦中获得的Cre3基因能最有效的控制线虫数量,其次是Cre1和Cre8。这些基因的克隆对于了解禾谷孢囊线虫抗性机制及进一步的育种应用都是非常关键的。然而,目前为止仅有Cre3基因通过图位克隆的方法从节节麦中被分离得到。该基因已被克隆得到的多数线虫抗性基因一样均属于核苷酸结合位点区(NBS)-亮氨酸重复序列区(LRR)基因家族。目前,已有很多抗性基因被分离,这些已知的NBS-LRR类抗性基因的保守序列为应用PCR的方法克隆新的抗性基因提供了可能。 因此本课题的目的是采用保守区同源克隆、3′RACE 和5′RACE 等方法从抗禾谷孢囊线虫小麦-易变山羊草小片段易位系E10 中克隆小麦抗禾谷孢囊线虫基因全序列,进而通过半定量PCR 和荧光定量PCR 研究该基因的表达模式。同时通过mRNA 差别显示技术和任意引物PCR(RAP-PCR)技术分离克隆植物禾谷孢囊线虫抗性基因及其相关基因,为阐明植物抗病性分子机制以及改良作物抗病性和作物育种提供基础,为通过分子标记辅助育种和基因工程方法实现高效、定向转移抗病基因到优良小麦品种奠定了重要的理论和物质基础。主要研究结果: 1. 本实验根据此前从抗禾谷孢囊线虫材料E-10 扩增得到的与来自节节麦的抗禾谷孢囊线虫Cre3 基因及其他的NBS-LRR 类抗性基因的NBS 和LRR 保守区序列设计了两对特异性引物,从E10 中扩增到532bp 和1175bp 的两个目标条带,它们有一个32bp 的共同序列,连接构成总长为1675bp 的NBS-LRR 编码区(命名为RCCN)。根据RCCN设计引物,利用NBS-LRR区序列设计引物,通过5′RACE 和3′RACE 技术采用3′-Full RACE Core Set(TaKaRa)和5'-Full RACE Kit (TaKaRa)试剂盒,反转录后通过嵌套引物GSP1 和GSP2 分别进行两轮基因特异性扩增,分别将NBS_LRR 区向5′端和3′端延伸了1173bp 和449bp,并包含了起始密码子和终止密码子。根据拼接的得到的序列重新设计引物扩增进行全基因扩增的结果与上面获得的一致。拼接后得到全长2775 bp 的基因序列(记作CreZ, GenBank 号:EU327996)。CreZ 基因包括完整的开放阅读框,全长2775 bp,编码924个氨基酸。序列分析表明它与已知的禾谷孢囊线虫抗性基因Cre3的一致性很高,并且它与已经报到的NBS-LRR 类疾病抗性基因有着相同的保守结构域。推测CreZ基因可能是一个新的NBS-LRR 类禾谷孢囊线虫抗性基因,该基因的获得为通过基因工程途径培育抗禾谷孢囊线虫小麦新品种奠定了基础,并为抗禾谷孢囊线虫基因的调控表达研究提供了参考。 2. 通过半定量PCR和SYBR Green荧光定量PCR技术对CreZ基因的相对表达模式进行了研究。以α-tubulin 2作为参照,采用半定量PCR 分析CreZ 基因在不同接种时期1d, 5d, 10, 15d 的E-10的根和叶的的表达情况。在内参扩增一致的条件下,CreZ 在E-10的根部随着侵染时间的增加表达量有明显的增加,在没有侵染的E-10的根部其表达量没有明显变化,而在叶中没有检测表达,说明该基因只在抗性材料的根部表达。SYBR Green定量PCR分析接种前后E10根部基因CreZ基因的表达水平为检测CreZ基因的表达建立了一套灵敏、可靠的SYBRGreen I 荧光定量PCR 检测方法。接种禾谷孢囊线虫后E10根内CreZ基因的相对表达水平显著高于接种前。随接种时间的延长持续增加,最终CreZ基因的相对表达量达到未接种的对照植株的10.95倍。小麦禾谷孢囊线虫抗性基因CreZ的表达量与胁迫呈正相关,表明其与小麦的的禾谷孢囊线虫抗性密切相关,推测CreZ基因可能是一个新的禾谷孢囊线虫候选抗性基因。 3. 针对小麦基因组庞大、重复序列较多,禾谷孢囊线虫抗性基因及其相关基因的片断难以有效克隆的问题,通过mRNA 差别显示技术及RAP-PCR 技术分离克隆植物禾谷孢囊线虫抗性及其相关基因。试验最终得到154 条差异表达条带,将回收得到的差异条带的二次PCR 扩增产物经纯化后点到带正电的尼龙膜上,进行反向Northern 杂交筛选,最终筛选得到102 个阳性差异点。将其中81 个进行测序,并将序列提交到Genbank 中的dbEST 数据库,分别获得登录号(FE192210 -FE192265,FE193048- FE193074 )。序列比对分析发现,其中26 个序列与已知功能的基因序列同源;有28 条EST 序列在已有核酸数据库中未找到同源已知基因和EST,属新的ESTs 序列;另外27 个EST 序列与已知核酸数据库中的ESTs 具有一定相似性,但功能未知。其所得ESTs 序列补充了Genbank ESTs 数据库,为今后进一步开展抗禾谷类孢囊线虫基因研究工作打下了基础。结合本试验功能基因的相关信息,对小麦接种禾谷孢囊线虫后产生的抗性机制进行了探讨。接种禾谷孢囊线虫后植物在mRNA 水平上的应答是相当复杂的,同时植物的抗病机制是一个复杂的过程,涉及到多个代谢途径的相互作用。 The cereal cyst nematode (CCN), Heterodera avenae Woll, causes severe yieldreductions in cereal crops. The losses caused by CCN can be up to 30-100% in somewheat fields. At present, cereal cyst nematode has become the major disease sourcein China and it also damaged heavily in Australia, Europe, India and Middle East.The damage caused by CCN can be mitigated through several methods, includingcrop rotation, nematicide application, cultural practice, host resistance, and others.Of these methods, incorporating resistance genes into wheat cultivars and breedingresistant lines is considered to be the most cost-effective control measure forreducing nematode populations. Although wheat is an economically important crop around the world, far fewergenes resistant to CCN were found in wheat than were detected in its relatives, suchas Aegilops taucchi, Aegilops variabilis and Aegilops ventricosa. Cloning these genesis essential for understanding the mechanism of this resistance and for furtherapplication in breeding. Because of the huge genome and high repeat sequencescontent, the efficient methods to clone genes from cereal crops, are still lacking. A resistance locus, Cre, has been identified and 9 genes resistant to CCN (designatedCre1, 2, 3, 4, 5, 6, 7, 8, and R) have been described, in which Cre1 and Cre8 werederived directly from common wheat. The Cre3 locus, which was derived from Ae.tauschii, has the greatest impact on reducing the number of female cysts, followed byCre1 and Cre8. Cloning these genes is essential for understanding the mechanism ofthis resistance and for further application in breeding. However, to this point, only Cre3, a NBS-LRR disease resistance gene, has been obtained through mappingcloning in Ae. tauschii. The majority of nematode resistance genes cloned so far belong to a super familywhich contains highly conserved nucleotide-binding sites (NBS) and leucine-richrepeat (LRR) domains. To date, many NBS-LRR resistance genes have been isolated.The conserved sequences of these recognized NBS-LRR resistance genes provide thepossibility to isolate novel resistance genes using a PCR-based strategy. The aim of the present study was to clone the resistance gene of CCN fromWheat/Aegilops variabilis small fragment chromosome translocation line E10 whichis resistant to CCN and investigate the espression profiles of this gene withsemi-quantitative PCR and real-time PCR. Another purpose of this study is cloningthe relational resistance gene for CCN by mRNA differential display PCR andRAP-PCR. These works will offer a foundation for disease defence of crop andbreeding and directional transferring resistance gene into wheat with geneengineering. Primary results as following: 1.According to the conversed motif of NBS and LRR region of cereal cystnematode resistance gene Cre3 from wild wheat (Triticum tauschlii) and the knownNBS-LRR group resistance genes, we designed two pairs of specific primers for NBSand LRR region respectively. One band of approximately 530bp was amplified usingthe specific primers for conversed NBS region and one band of approximately 1175bpwas amplified with the specific primers for conversed LRR region. After sequencing,we found that these two sequences included 32bp common nucleotide having 1675bpin total, which was registered as RCCN in the Genbank. Based on the conservedregions of known resistance genes, a NBS-LRR type CCN resistance gene analog wasisolated from the CCN resistant line E-10 of the wheat near isogenic lines (NILs), by5′RACE and 3′ RACE.designated as CreZ (GenBank accession number: EU327996) .It contained a comlete ORF of 2775 bp and encoded 924 amino acids. Sequencecomparison indicated that it shared 92% nucleotide and 87% amino acid identitieswith those of the known CCN-resistance gene Cre3 and it had the same characteristic of the conserved motifs as other established NBS-LRR disease resistance genes. 2. Usingα-tubulin 2 as exoteric reference, semi-quantitative PCR and real-timePCR analysis were conducted. The expression profiling of CreZ indicated that it wasspecifically expressed in the roots of resistant plants and its relative expression levelincreased sharply when the plants were inoculated with cereal cyst nematodes. therelative expression level of the 15days-infected E10 is the 10.95 times as that ofuninfected E10,ultimately. It was inferred that the CreZ gene be a novel potentialresistance gene to CCN. 3.We cloned the relational resistance gene for CCN by mRNA differentialdisplay PCR and arbitrarily primed PCR fingerprinting of RNA from wheat whichpossess huge and high repeat sequence content genomes. Total 154 differentialexpression bands were separated and second amplified by PCR. The products werenylon membrane. The 102 positive clones were filtrated by reverse northern dot blotand 81 of those were sent to sequence. The EST sequences were submitted toGenbank (Genbank accession: FE192210 - FE192265, FE193048 - FE193074). Thesequences alignment analysis indicated 26 of them were identical with known genes;28 were not found identical sequence in nucleic acid database; another 27 ests wereidentical with some known ests, but their functions were not clear. These ESTsenriched Genbank ESTs database and offered foundation for further research ofresistance gene of CCN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

赤霉素是一种高效能的广谱植物生长调节剂,为五大植物激素之一,具有重要的生物学功能。目前利用赤霉素突变体研究生物合成途径和信号转导已经成为热点。 GA 20-氧化酶是GA生物合成中的一类关键酶,它位于GA合成途径的中心位置。本研究根据烟草(Nicotiana tabacum)GA 20-氧化酶基因序列,设计2对分别含有特定酶切位点的特异引物,以烟草基因组DNA为模板,扩增目的基因(约250 bp)片段。将正、反向目的片段分别插入中间载体的内含子两侧,再经BamH I和Sac I双酶切回收约700 bp的目的片段,插入到双元载体质粒p2355中,成功构建了含GA 20-氧化酶基因片段反向重复序列的植物表达载体p23700。分别将p2355质粒和p23700质粒导入根癌农杆菌(Agrobacterium tumefaciens)EHA105中并转化烟草叶片细胞,经卡那霉素选择培养,PCR及GUS组织染色鉴定,获得转基因烟草植株。以EHA105-p2355转化的烟草,获得41株转基因植株,均没有矮化表型;而以EHA105-p23700转化的烟草,获得转基因植株14株,其中具有矮化表型的烟草10株,表明反向重复序列转录产物能形成发夹RNA(hpRNA),产生小分子干扰RNA(small interferring RNA,简称siRNA),干扰目的基因的表达。 赤霉素含量测定表明矮化植株中赤霉素合成途径的最终产物GA3总含量明显低于野生型烟草植株。荧光定量PCR结果表明,矮化转基因烟草的GA 20-氧化酶基因表达量受到明显抑制,表达量明显低于野生型对照。同时对上游内根-贝壳杉合成酶(Ent-kaurene synthase,KS)基因,下游的GA-3β羟化酶基因进行了RT-PCR分析,结果显示上游基因的表达没有规律性变化,而下游基因表达量亦降低。上述结果表明,GA 20-氧化酶基因的表达被有效地干扰了,表达受到抑制,从而影响植株体内GA3的合成,影响植株的生长发育,导致植株矮化。并推测,GA 20-氧化酶基因受到抑制,可能影响下游基因的表达。并且通过干旱胁迫测试,发现矮化植株相对于野生型植株及不含干扰片段的转基因植株,对干旱的耐受力有了很大的提高,具有更强的耐受力。 研究结果为进一步进行相关研究奠定基础。 Gibberellin(GA) is an efficient plant growth regulator. As one of five major plant hormones, it plays an important biological function. Using GA mutant for investigating biosynthetic pathways and signal transduction has become high lights. GA 20-oxidase is a crucial enzyme involved in gibberellin biosynthesis. According to tobacco (Nicotiana tabacum) GA 20-oxidase enzyme gene sequence and based on binary vector p2355, we constructed a plant expression vector p23700, which habors an inverted repeat DNA fragment of GA 20-oxidase gene drivered by Cauliflower mosaic virus promtor (CaMV 35Sp). Binary plasmid p2355 had no inverted repeat DNA fragment of GA 20-oxidase gene. The vector p2355 and p23700 were introduced into Agrobacterium tumefaciens EHA105 and tobacco leaf transformation was conducted. After selected by kanamycin and characterized by PCR and GUS hischemical reaction, transsgenic plants were obtained. Fourtheen transgenic plants, which were transformed by EHA105-p23700, were obtained. Among them, 10 were dwarf mutants. However, 41 transgenic plants with the same normal phenotype as wild type,which were transformed by EHA105-p2355, were obtained. Analysis of Gibberellin contents showed that it was lower in dwarf mutants than in normal phenotype plants. Moreover, comparing to normal phenotype plants including wild type and transgenic plants with no interference fragment, the drought tolerance of dwarf plants have greatly increased. And their proline content increased obviously after drought test. Fluorescence quantitative real time PCR (RT-PCR) showed that GA 20-oxidase gene expression was significantly inhibited in dwarf transgenic tobacco. Meanwhile, the expression of the upstream gene ent-kaurene synthase (KS) gene and downstream gene GA-3β hydroxylase gene was also detected by RT-PCR. The results presented that KS gene expression had no regular change while GA-3β hydroxylase gene expression reduced. It implied that inhibiting GA 20-oxidase gene probably reduce the expression of downstream genes. The results showed that the transcriptional products of the foreign inverted repeat fragment can form hairpin RNA (hpRNA) to induce RNAi. It presented that GA 20-oxidase gene expression was effectively interfered, resulting in reducing GA3 synthesis and inhibiting plant growth and development, then dwarf plants were produced. However, the dwarf plants had higher tolerance of drought.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>NF-kappa B is a B-cell specific transcription factor that plays crucial roles in inflammation, immunity, apoptosis, development and differentiation. In the present study, a novel NF-kappa B-like transcription factor Relish was cloned from Chinese mitten crab Eriocheir sinensis (designated as EsRelish) by rapid amplification of cDNA ends (RACE) technique based on expressed sequence tag (EST). The full-length cDNA of EsRelish was of 5034 bp, consisting of a 5' untranslated region (UTR) of 57 bp, a 3' UTR of 1335 bp with two mRNA instability motifs (ATTTA), a polyadenylation signal sequence (AATAAA) and a poly (A) tail, and an open reading frame (ORF) of 3645 bp encoding a polypeptide of 1214 amino acids with a calculated molecular mass of 134.8 kDa and a theoretical isoelectric point of 5.26. There were a typical Rel homology domain (RHD), two nuclear localization signal (NLS) sequences (KR), an inhibitor kappa B (I kappa B)-like domain with six ankyrin repeats, a PEST region and a death domain in the deduced amino acid sequence of EsRelish. Conserved domain, higher similarity with other Rel/NF-kappa Bs and phylogenetic analysis suggested that EsRelish was a member of the NF-kappa B family. Quantitative real-time RT-PCR was employed to detect the mRNA transcripts of EsRelish in different tissues and its temporal expression in hemocytes of E. sinensis challenged with Pichia methanolica and Listonella anguillarum. The EsRelish mRNA was found to be constitutively expressed in a wide range of tissues. It could be mainly detected in the hemocytes, gonad and hepatopancreas, and less degree in the gill, muscle and heart. The expression level of EsRelish mRNA in hemocytes was up-regulated from at 3, 6, 9 and 12 h after P. methanolica challenge. In L. anguillarum challenge, it was up-regulated at 9, 12 and 24 h. The results collectively indicated that EsRelish was potentially involved in the immune response against fungus and bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxinectin, a cell-adhesive hemoperoxidase that binds superoxide dismutase and mediates blood cells adhesion and migration in invertebrate, is believed to play an important role in cellular immune reaction. In this study, we reported a new peroxinectin gene homologue from Chinese shrimp Fenneropenaeus chinensis. Based on expressed sequence tags (ESTs) of haemocyte cDNA library, we cloned a 2,611 bps full-length cDNA of peroxinectin gene homologue encoded 801 amino acids. Motif scanning of the predicted polypeptide revealed a peroxidase domain and an integrin binding motif (Lys-Gly-Asp, KGD). Peroxinectin gene expressed constitutively in haemocyte as determined by quantitative real-time RT-PCR, the expression level varied following bacterial challenge. These findings suggested that peroxinectin expression is susceptible to exterior stimulus and maintains at a high expression level during bacterial infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxiredoxin is a superfamily of antioxidative proteins that play important roles in protecting organisms against the toxicity of reactive oxygen species (ROS). In this study, the full-length cDNA encoding peroxiredoxin 6 (designated EsPrx6) was cloned from Chinese mitten crab Eriocheir sinensis by using rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of EsPrx6 was of 1076 bp, containing a 5' untranslated region (UTR) of 69 bp, a 3' UTR of 347 bp with a poly (A) tail, and an open reading frame (ORF) of 660 bp encoding a polypeptide of 219 amino acids with the predicted molecular weight of 24 kDa. The conserved Prx domain, AhpC domain and the signature of peroxidase catalytic center identified in EsPrx6 strongly suggested that EsPrx6 belonged to the 1-Cys Prx subgroup. Quantitative real-time RT-PCR was employed to assess the mRNA expression of EsPrx6 in various tissues and its temporal expression in haemocytes of crabs challenged with Listonella anguillarum. The mRNA transcript of EsPrx6 could be detected in all the examined tissues with highest expression level in hepatopancreas. The expression level of EsPrx6 in haemocytes was down-regulated after bacterial challenge and significantly decreased compared to the control group at 12 h. As time progressed, the expression level began to increase but did not recover to the original level during the experiment. The results suggested the involvement of EsPrx6 in responses against bacterial infection and further highlighted its functional importance in the immune system of E sinensis. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclophilin A (CypA), a receptor for the immunosuppressive agent cyclosporin A (CsA), is a cis-trans peptidyl-prolyl isomerase (PPIase) which accelerates the cis-trans isomerization of prolyl-peptide bonds, interacts with a variety of proteins and therefore regulates their activities. One CypA (designated CfCypA) cDNA was cloned from Chlamys farreri by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. The full-length cDNA of CfCypA consisted of 1,248 nucleotides with a canonical polyadenylation signal sequence AATAAA, a poly (A) tail, and an open reading frame (ORF) of 495 nucleotides encoding a polypeptide of 164 amino acids. The deduced amino acid sequence shared high similarity with CypA from the other species, indicating that CfCypA should be a new member of the CypA family. Quantitative real-time (RT) PCR was employed to assess the mRNA expression of CfCypA in various tissues and its temporal expression in haemocytes and gonad of scallops challenged with Vibrio anguillarum. The mRNA transcripts of CfCypA could be detected in all the examined tissues with highest expression level in gonad. After bacterial challenge, the expression level of CfCypA was almost unchanged in haemocytes, but up-regulated in gonad and increased to the peak (22.59-fold; P < 0.05) at 4 h post-injection, and then dropped to the original level at 8 h post-injection. These results indicated that CfCypA was constitutive expressed in haemocytes, but could be induced in gonad, and perhaps played a critical role in response to the bacterial challenge in gonad.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arginine kinase (AK) is a phosphotransferase that plays a critical role in energy metabolism in invertebrates. in this paper, the full-length cDNA of AI( was cloned from shrimp, Litopenaeus vannamei by using RT-PCR and RACE PCR. It was 1446 bp encoding 356 amino acids, and belongs to the conserved phosphagen kinase family. The quantitative real-time reverse transcription PCR analysis revealed a broad expression of AK with the highest expression in the muscle and the lowest in the skin. The expression of AK after challenge with LIPS was tested in hemocytes and muscle, which indicated that the two peak values were 6.2 times (at 3 h) and 10.14 times (at 24 h) in the hemocytes compared with the control values, respectively (P < 0.05), while the highest expression of AK was 41 times (at 24 h) in the muscle compared with the control (P < 0.05). In addition, AK was expressed in Eschetichia coli by prokaryotic expression plasmid pGEX-4T-2. The recombinant protein was expressed as glutathione s-transferase (GST) arginine kinase (GST-AK) fusion protein, which was purified by affinity chromatography using Glutathione Sepharose 4B. After cleavage from GST by using a site-specific protease, the recombinant protein was identified by ESI-MS and showed AK activity. After treatment with 10 mM ATP, the enzyme activity significantly increased. However, the enzyme activity was inhibited by 10 mM alpha-ketoglutarate, 50 mM glucose and 200 mM ATP. This research suggested that AK might play an important role in the coupling of energy production and utilization and the immune response in shrimps. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C-type lectins are a superfamily of carbohydrate-recognition proteins which play crucial roles in the innate immunity. In this study, the gene of a C-type lectin with multiple carbohydrate-recognition domains (CRDs) from scallop Chlamys farreri (designated as Cflec-3) was cloned by rapid amplification of cDNA ends (RACE) approach based on expression sequence tag (EST) analysis. The full-length cDNA of Cflec-3 was of 2256 bp. The open reading frame encoded a polypeptide of 516 amino acids, including a signal sequence and three CRDs. The deduced amino acid sequence of Cflec-3 showed high similarity to members of C-type lectin superfamily. By fluorescent quantitative real-time PCR, the Cflec-3 mRNA was mainly detected in hepatopancreas, adductor, mantle, and marginally in gill, gonad and hemocytes of healthy scallops. After scallops were challenged by Listonella anguillarum, the mRNA level of Cflec-3 in hemocytes was up-regulated and was significantly higher than that of blank at 8 h and 12 h post-challenge. The function of Cflec-3 was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli BL21 (DE3)-pLysS. The recombined Cflec-3 (rCflec-3) agglutinated Gram-negative bacteria Pseudomonas stutzeri. The agglutinating activity was calcium-dependent and could be inhibited by D-mannose. These results collectively suggested that Cflec-3 was involved in the immune response against microbe infection and contributed to nonself-recognition and clearance of bacterial pathogens in scallop. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anti-lipopolysaccharide factor (ALF) represents one kind of basic proteins, which binds and neutralizes LPS and exhibits strong antibacterial activity against Gram-negative R-type bacteria. The ALF gene of Chinese mitten crab Eriocheir sinensis (Milne Edwards, 1853) (denoted as EsALF) was identified from haemocytes by expressed sequence tag (EST) and PCR approaches. The full-length cDNA of EsALF consisted of 700 nucleotides with a canonical polyadenylation signal-sequence AATAAA, a polyA tail, and an open-reading frame of 363 bp encoding 120 amino acids. The high similarity of EsALF-deduced amino acid sequence shared with the ALFs from other species indicated that EsALF should be a member of ALF family. The mRNA expression of EsALF in the tissues of heart, gonad, gill, haemocytes, eyestalk and muscle was examined by Northern blot analysis and mRNA transcripts of EsALF were mainly detected in haemocytes, heart and gonad. The temporal expression of EsALF in haemocytes after Vibrio anguillarum challenge was recorded by quantitative real-time RT-PCR. The relative expression level of EsALF was up-regulated rapidly at 2 h post-injection and reached 3-fold to that in blank group. After a drastic decrease to the original level from 4 to 8h, the expression level increased again and reached 4-fold to that in the blank group at 12 h post-injection. The genomic DNA sequence of EsALF gene consists of 1174bp containing three exons and two introns. The coding sequence of the EsALF mature peptide was cloned and expressed in Escherichia coli BL21(DE3)-pLysS to further elucidate its biological functions. The purified recombinant product showed bactericidal activity against both Gram-positive (G(+)) and Gram-negative (G(-)) bacteria, which demonstrated that the rEsALF was a broad-spectrum antibacterial peptide. All these results indicated that EsALF was an acute-phase protein involved in the immune responses of Chinese mitten crab, and provided a potential therapeutic agent for disease control in aquaculture. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serine proteinase inhibitors (SPIs) play important roles in host physiological and immunological processes in all multicellular organisms. A novel Kazal-type SPI gene was cloned from the Zhikong scallop Chlamys farreri (designated as CfKZSPI) by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfKZSPI was of 1788 nucleotides with a canonical polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) encoding a polypeptide of 509 amino acids with a putative signal peptide of 22 amino acids. The deduced amino acid sequence of CfKZSPI contained 12 tandem Kazal domains with high similarity to other Kazal-type SPIs. The temporal expression of CfKZSPI in hemocytes after Vibrio anguillorum challenge was recorded by quantitative real-time RT-PCR. The relative mRNA expression level of CfKZSPI was up-regulated and reached 43.6-fold at 3 h post-challenge. After a decrease at 6 h, the expression Level increased again and reached 207.8-fold at 12 h post-challenge. The 12th Kazal domain of CfKZSPI was recombined into pET-32a(+) and expressed in Escherichia coli Rosetta-gami (DE3) to investigate its inhibitory activity. The purified recombinant protein (rCf KZSPI-1 2) showed significant inhibitory activity against trypsin but no activity against thrombin. When the molar ratio of inhibitor to trypsin reached 1:1, almost 90% of the enzyme activity could be inhibited, which suggested that one molecule of rCfKZSPI-12 was able to inhibit one molecule of trypsin. Kinetics analysis with Dixon plot showed that the inhibition constant (K-i) of rCfKZSPI-12 to trypsin was 173 nmol L-1. These results indicated that CfKZSPI was a novel Kazal-type SPI with significant inhibitory activity against trypsin, and was suspected to be involved in scallop immune response. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecdysone inducible gene. E75 is a primary target of ecdysone receptor (EcR). and is found to play a critical role in the molting process of arthropods In this study, a cDNA encoding the E75 of Chinese shrimp Fenneropenaeus chinensis (FcE75) was cloned using RT-PCR and RACE techniques FcE75 cDNA was 3611 bp in length with an ORF of 2394 bp. The deduced amino acid sequence of FcE75 had the highest sequence identity to E75 from a land crab Gecarcinus lateral's and E75 of the shrimp Metapenaeus crisis Quantitative real-time PCR revealed a prominently high expression of FcE75 mRNA in the whole body RNA extract of late premolt period (D3) juvenile shrimp. The role of E75 in the process of shrimp molting was investigated using the RNA interference technique Long double-stranded RNA corresponding to the FcE75 (dsE75) efficiently silenced the FcE75 transcript levels in juvenile F. chinensis. Further, injection with dsE75 completely arrested the molting process in experimental shrimp which eventually caused death Setogenic analysis of the uropods from molt-arrested shrimp, showed defective epidermal retraction, poor development of setae and new cuticle. These results indicate that E75 might be related to the molting process and is essential for proper molting and survival of shrimp This is the first report demonstrating the use of double stranded RNA to elucidate the possible role of E75 in the molting of decapod crustaceans (C) 2010 Elsevier Inc All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Translationally controlled tumor protein (TCTP) is one of the abundant and ubiquitously expressed proteins in metazoans In the present study, the first molluscan TCTP (denoted as VpTCTP) was identified from Venerupis philippinarum haemocytes by EST and RACE approaches The full-length cDNA of VpTCTP consisted of 1148 nucleotides with an open-reading frame of 555 bp encoding 184 amino acids The deduced amino acid sequence of VpTCTP shared high similarity with TCTPs from other species, indicating that VpTCTP should be a new member of TCTP family Several highly conserved motifs, including 5'terminal ologopyrimidine (5'TOP) starting sequence and rich AU and AUUT elements in 3'UTR, were also identified in VpTCTP The tissue and temporal expression of VpTCTP after Vi boo anguillarum challenge was recorded by quantitative real-time RT-PCR. VpTCTP transcript could be detected in all examined tissues with the highest expression level in haemocytes and the lowest in hepatopancreas Concerning the time-course expression in haemocytes, the relative expression of VpTCTP mRNA was down-regulated sharply from 6 h to 12 h post-infection. Then, the expression level was obviously up-regulated and reached 3.4-fold to that in the control group at 48 h post challenge As time progressed, the expression of VpTCTP recovered to the original level at 96 h. All these results indicated that VpTCTP was an acute-phase protein involved in the Immune response of V philippinarum (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

血管内皮生长因子(vascular endothelial growth factor, VEGF)是一种多功能的细胞因子,其主要作用是促进血管内皮细胞增殖和增加血管通透性,是肿瘤及正常组织血管生成的中心调控因素,以VEGF为靶点的肿瘤血管靶向性治疗成为近几年肿瘤治疗的新途径。RNAi是近年来新发展的一项反向遗传学技术,是一种研究基因功能的有力工具。斑马鱼作为一种重要的模式生物,被广泛用于胚胎的分子发育机制、疾病模型的构建以及药物筛选等研究中。然而在斑马鱼中运用RNAi技术进行基因功能研究是一个相对较新的领域,研究资料较少,并且目前进行的斑马鱼RNAi实验中,siRNA大都是通过化学方法或体外转录合成的。体外合成的siRNA在进入体内后会被降解而无法达到持久阻抑基因表达的目的。因此本研究旨在探讨VEGF特异性siRNA表达载体对斑马鱼VEGF基因的沉默作用,通过分析表型及相关细胞因子的变化,阐明VEGF对斑马鱼胚胎血管生成的影响及作用机制。 研究通过计算机辅助设计软件,针对斑马鱼VEGF mRNA不同位点设计合成了4段含siRNA特异序列的DNA单链,经退火,克隆入pSilencer 4.1-CMV neo载体CMV启动子下游,构建了重组质粒pS1-VEGF、pS2-VEGF、pS3-VEGF及pS4-VEGF。 通过显微注射的方法将载体导入1-2细胞期斑马鱼体内,于胚胎发育的48 h采用RT-PCR的方法检测VEGF基因的表达量,研究不同干扰序列对VEGF基因表达的干涉作用。结果显示,针对不同位点的表达载体对VEGF基因表达的抑制效率有显著差异。它们对VEGF mRNA的抑制率分别为80.5%,42.8%,12.5%,40.7%。通过筛选我们得到了一条具有高效抑制作用的载体pS1-VEGF,该载体的相应序列靶向斑马鱼两个主要异构体VEGF165和VEGF121的共有外显子序列。 形态学检测结果显示,注射了pS1-VEGF的胚胎出现了心包膜水肿、血流速度减慢、循环红细胞堆积等症状。定量碱性磷酸酶染色显示,注射pS1-VEGF能够抑制斑马鱼胚胎新生血管的形成,当注射剂量为0.4 ng时,血管生成的抑制率为31.8%。NBT/BCIP血管染色显示,注射该载体后72 h,50%的斑马鱼肠下静脉、节间血管以及其它血管的发育受到不同程度的抑制。随着注射剂量的加大,血管发育受抑制的情况也随之加重,当注射剂量为1 ng时,只有心脏、头部及卵黄有血液循环。对干扰效果的特异性进行了研究,结果表明pS1-VEGF对斑马鱼内源基因胸苷酸合成酶(thymidylate synthase, TS)基因的表达没有明显的抑制作用。针对TS基因的shRNA表达载体及与斑马鱼没有同源性的对照载体对VEGF基因表达也没有明显的抑制作用。浓度梯度实验表明在0-1.2 ng的范围内干扰效果具有剂量依赖性。 以胚胎整体原位杂交的方法检测质粒对VEGF基因受体NRP1基因表达的影响,发现VEGF特异性shRNA表达载体能够引起NRP1基因表达的降低,说明斑马鱼中VEGF所介导的血管生成作用至少在部分上是依赖于NRP通路所调节的。 本研究工作为进一步研究斑马鱼基因功能、VEGF调控网络提供了一个快速、有效的手段,为阐明斑马鱼的血管生成机制提供了新的资料,为采用RNAi技术,以VEGF为靶点,以斑马鱼为模型对肿瘤进行基因治疗研究奠定了基础。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

作为植物界广泛存在的一类酚类聚合物,木质素是陆生植物正常生长发育过程中非常重要的生物大分子,而且与人类的生活息息相关。利用分子生物学手段和基因工程方法,从小麦中分离木质素生物合成途径的关键酶-肉桂酰辅酶A还原酶基因(CCR),研究肉桂酰辅酶A还原酶基因在木质素代谢途径中的调控规律,从其催化的限速步骤入手,来调控木质素的合成,有效的改变木质素的组成、含量和结构,是改善木质素在植物生长发育中的作用乃至开发木质素资源的关键所在。本文就小麦肉桂酰辅酶A还原酶基因的分离、表达特征及其在木质素合成途径中的作用开展了研究工作。 首先用RACE方法从小麦中克隆了CCR的两个cDNA的部分序列,序列分析表明它们编码的蛋白具有CCR的典型特点,GC含量高于均60%,两者在核酸水平和蛋白水平的同源性为76%和 69%,证明在小麦中至少存在着两个CCR基因。通过 RT-PCR和Northern 杂交确定W-cr6和W-cr19在小麦的发育中具有不同的表达特征,W-cr6主要在茎中表达,而W-cr19的表达集中在根中。以W-cr6为探针,从cDNA文库中筛选到一个全长1317bp的cDNA,命名为TaCCR1。TaCCR1包括开放阅读框 (ORF) 1047bp、5′端侧翼 72bp和3′端侧翼198bp的非翻译序列。TaCCR1能够编码由349个氨基酸组成的蛋白质,预期的分子量为37.4kD。同源性比较显示TaCCR1基因在核酸水平和蛋白质水平与其他物种的CCR基因的同源性高于60%。 为了分析CCR在木质素合成中的作用,用TaCCR1构建了用于转化烟草的正义和反义表达载体pStCCR和pAtCCR、用于转化小麦的正义和反义表达载体pBSC1和pBAC1。通过农杆菌介导得到了30株反义转基因烟草和12株正义转基因烟草。由于外源基因的抑制作用,转基因烟草在形态、木质素组成和含量、木质部显微结构上都程度不同的发生了变化。正义和反义的转基因株系呈现出株型矮化、木质素含量下降、木质部导管细胞壁受到破坏等现象。同时利用花粉管通道法转化小麦种子5000多粒,部分处理经过初步的PCR和 Southern分子鉴定获得了1株转基因株系,需要对其遗传、生理和形态特征做进一步的研究。 本文还对木质素对小麦茎杆的机械强度的影响做了初步的探讨,得到的结果是小麦茎杆的木质素含量、维管束的数量、茎杆有效的横界面积与其最大弯曲应力存在着正相关,而维管束的结构、密度对茎杆的最大弯曲应力没有明显的影响,从而为通过CCR基因来改善小麦茎杆的抗倒特性建立了生理学基础。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

花是被子植物最关键的创新(innovation)性状。在被子植物的不同类群中,其形态多种多样,尤其以基部真双子叶植物的花形态最为丰富。大量的系统发育分析表明,在核心真双子叶植物起源之前,几个与花发育相关的MADS-box基因亚家族均发生了大尺度的基因重复事件。因此,在被子植物的不同物种中,花发育相关基因的组成并不相同,并且它们经历了不同的进化历史,这意味着这些基因可能以不同的方式调控花的发育。基部真双子叶植物,作为基部被子植物和核心真双子叶植物之间的过渡类群,对于我们理解被子植物花的进化,揭示核心真双子叶植物花的起源以及基部真双子叶植物花多样性分化的分子机制非常重要。本文以基部真双子叶植物三叶木通为研究材料,着重进行了以下研究工作: 1. 花器官发生过程的观察。三叶木通的花为雌雄同序的单性花。而且,根据成熟花的形态,三叶木通的雌花和雄花都只有一轮花被器官,即三个花瓣状的萼片。扫描电镜的观察结果表明:1)在花器官的发生和发育过程中,在萼片和雄蕊原基之间,确实没有花瓣原基或另一轮萼片原基发生。2)雌花和雄花都是以两性花的方式发生发育的。3)单性花是由于在花发育的最后阶段,雌花中雄蕊或者雄花中心皮的退化而产生的。 2. 花发育相关基因的克隆。应用5’/3’ RACE的方法,我们从三叶木通不同发育阶段的混合花芽中共分离到九个与花发育相关的MADS-box基因: AktFL1、AktFL2、AktAP3_1、AktAP3_2、AktAP3_3、AktPI、AktAG1、AktAG2和AktSEP3。 3. A类MADS-box基因的进化。由于A类基因在进化过程中序列结构的改变,再加上取样的限制,使得A类基因间的进化历史一直不能被很好的理解。因此,本文对A类基因的研究从构建该基因亚家族的系统发育树开始。主要结果如下:1)通过扩大在基部真双子叶植物和被子植物其它重要类群的取样,我们的系统发育树基本上反映了现存被子植物的系统发育关系。2)核心真双子叶植物的A类基因由三个分支组成:euFUL、euAP1和AGL79,它们是通过发生在核心真双子叶植物起源之前的两次几乎同时的基因重复事件产生的。3)在基部真双子叶植物中,山龙眼目、毛茛目和黄杨科的A类基因各形成一支。而且,在这些类群内,发生了多次小尺度的独立的基因重复事件。4)来自单子叶植物的FUL-like基因明显地构成一个单系,并且包括三个分支:OsAMDS14、OsMADS15和OsMADS18。它们是由于两次不连续的基因重复事件产生的。5)不同类型的A类基因产物在C末端拥有不同的保守基元。6)从基因组结构上看,所有的A类基因都拥有八个外显子和七个内含子。7)通过对三叶木通中两个FUL-like型基因(AktFL1和AktFL2)表达式样的观察,我们发现它们在叶原基和发育早期的花原基以及发育着的花器官中都有表达。此外,A类基因表达式样的进化分析结果表明被子植物中该类基因的祖先可能具有广泛的功能,既在营养器官中表达又在生殖器官中表达 。 4. B类基因表达式样的保守性和多样性。通过对B类基因的系统发育和表达式样分析,得到以下结果:1)三叶木通中的三个paleoAP3基因是通过两次基因重复事件产生的。2)在木通科或木通属内,PI型基因并没有发生基因重复事件。3)RT-PCR结果表明,AktAP3_1在雌花中的表达量比雄花中高,而AktAP3_2则在雄花中的表达量比雌花中高。AktAP3_3和AktPI在雌花和雄花中的表达水平相似。4)原位杂交分析显示这些基因在发育着的雄蕊和心皮中表达。此外,AktAP3_3和AktPI还在萼片中表达,可能参与花瓣状萼片的发育。 5. 三叶木通C/D和E类基因的序列结构和表达分析。通过序列结构分析,我们发现,与其它被子植物AG同源基因编码的MADS-domain蛋白一样,AktAG1和AktAG2在MADS结构域的N末端都拥有一段氨基酸序列的延伸,AktAG1为20个氨基酸;AktAG2为7个氨基酸。原位杂交分析表明AktAG1和AktAG2主要在发育着的雄蕊和心皮中表达,说明它们具有决定生殖器官发育这一保守的功能。 AktSEP3属于AGL9型的E类基因。该基因在所有花器官中都有表达,说明和其它被子植物的E类基因一样,AktSEP3在三叶木通中对于所有花器官的发育都是必需的。 6. 各类MADS-domain蛋白间的相互作用。在前面工作的基础上,我们首次对三叶木通中上述MADS-domain蛋白间的作用方式进行了研究。酵母双杂交结果表明:1)AktSEP3的C末端具有转录激活功能。2)三个AktAP3蛋白与AktPI蛋白都能够形成异源二聚体,但是它们之间的作用能力并不相同。3)AktSEP3蛋白可以与AktFL1、AktPI、AktAG1和AktAG2形成异源二聚体,充分体现了E类基因产物作用式样的保守性。4)AktFL1与AktPI、AktSEP3和AktAG2也能形成异源二聚体,这与核心真双子叶植物的euFUL型蛋白在作用式样上是非常相似的。 综合以上结果,我们探讨了三叶木通花发育的分子机制。在三叶木通的三轮花器官中,与拟南芥等模式植物相似的是:E类(AktSEP3)基因在每一轮花器官中都起作用;此外,A类(AktFL1)和B类(AktAP3_3和AktPI)基因在花瓣状的萼片中有不同程度的表达,类似于拟南芥的第二轮;B类(AktAP3_1、AktAP3_2、AktAP3_3和AktPI)和C/D类(AktAG1和AktAG2)基因在雄蕊的发育过程中起作用;C/D类(AktAG1和AktAG2)基因对心皮的发育起作用。与拟 南芥等模式植物不同的是:1)虽然原位杂交分析表明,AktFL1、AktAP3_3、AktPI和AktSEP3都在花瓣状的萼片中有 不同程度的表达,但是它们的蛋白质产物AktFL1与AktSEP3和AktAP3_3与AktPI都只能形成较弱的异源二聚体。而 且,根据我们的研究结果,在三叶木通中没有找到euAP1型的A类基因,只有两个FUL-like型的A类基因。它们的功能 与核心真双子叶植物中的euFUL型基因相似。因此,AktFL1很可能与其它调控因子共同作用负责花分生组织的形成;AktFL1/AktAG2则可能在花发育的后期起作用。那么,三叶木通花瓣状萼片的发育是否需要AktFL1/AktSEP3和 AktAP3_3/AktPI的参与,还是另有其它转录因子的参与,仍然需要更深入的研究。2)虽然在三叶木通中,雄蕊的发 育同样需要B、C/D和E类基因的参与,但是由于小尺度的基因重复事件,在该物种中只拥有三个paleoAP3型基因,而没有euAP3型基因。而且,由于复制拷贝间的亚功能化,AktAP3_1/AktPI主要参与雌花的发育过程;而AktAP3_2/AktPI主要参与雄花的发育过程。