305 resultados para plasma sputtering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results observed experimentally are presented, about the DC arc plasma jets and their arc-root behaviour generated at reduced gas pressure without or with an applied magnetic field. Pure argon, argon-hydrogen or argon- nitrogen mixture was used as the plasma-forming gas. A specially designed copper mirror was used for a better observation of the arc-root behaviour on the anode surface of the DC non-transferred arc plasma torch. It was found that in the cases without an applied magnetic field, the laminar plasma jets were stable and approximately axisymmetrical. The arc-root attachment on the anode surface was completely diffusive when argon was used as the plasma-forming gas, while the arc-root attachment often became constrictive when hydrogen or nitrogen was added into the argon. As an external magnetic field was applied, the arc root tended to rotate along the anode surface of the non-transferred arc plasma torch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic coatings were formed by plasma electrolytic oxidation (PEO) on aluminized steel. Characteristics of the average anodic voltages versus treatment time were observed during the PEO process. The micrographs, compositions and mechanical properties of ceramic coatings were investigated. The results show that the anodic voltage profile for processing of aluminized steel is similar to that for processing bulk Al alloy during early PEO stages and that the thickness of ceramic coating increases approximately linearly with the Al layer consumption. Once the Al layer is completely transformed, the FeAl intermetallic layer begins to participate in the PEO process. At this point, the anodic voltage of aluminized steel descends, and the thickness of ceramic coating grows more slowly. At the same time, some micro-cracks are observed at the Al2O3/FeAl interface. The final ceramic coating mainly consists of gamma-Al2O3, mullite, and alpha-Al2O3 phases. PEO ceramic coatings have excellent elastic recovery and high load supporting performance. Nanohardness of ceramic coating reaches about 19.6 GPa. (c) 2007 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper describes a systematic study of argon plasmas in a bell-jar inductively coupled plasma (ICP) source over the range of pressure 5-20 mtorr and power input 0.2-0.5 kW, Experimental measurements as well as results of numerical simulations are presented. The models used in the study include the well-known global balance model (or the global model) as well as a detailed two-dimensional (2-D) fluid model of the system, The global model is able to provide reasonably accurate values for the global electron temperature and plasma density, The 2-D model provides spatial distributions of various plasma parameters that make it possible to compare with data measured in the experiments, The experimental measurements were obtained using a tuned Langmuir double-probe technique to reduce the RF interference and obtain the light versus current (I-V) characteristics of the probe. Time-averaged electron temperature and plasma density were measured for various combinations of pressure and applied RF power, The predictions of the 2-D model were found to be in good qualitative agreement with measured data, It was found that the electron temperature distribution T-e was more or less uniform in the chamber, It was also seen that the electron temperature depends primarily on pressure, but is almost independent of the power input, except in the very low-pressure regime. The plasma density goes up almost linearly with the power input.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy, velocity, angle distribution of ions in magnetoactive electron cyclotron resonance plasma have been studied with a two-dimension hybrid mode. The dependence of these distribution functions versus position and pressure are discussed. Our simulation results are in good agreement with many experimental measurements. (C) 1997 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the analysis of molecular gas dynamics, the drag and moment acting on an ellipsoid particle of revolution X-2/a(2) + Y-2/a(2) + Z(2)/c(2) = 1, as an example of nonspherical particles, are studied under the condition of free-molecular plasma flow with thin plasma sheaths. A nonzero moment which causes nonspherical particle self-oscillation and self-rotation around its own axis in the plasma flow-similar to the pitching moment in aerodynamics-is discovered for the first time. When the ratio of axis length c/a is unity, the moment is zero and the drag formula are reduced to the well-known results of spherical particles. The effects of the particle-plasma relative velocity, the plasma temperature, and the particle materials on the drag and moment are also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, argon (Ar) plasmas in a bell jar inductively coupled plasma (ICP) source are systematically studied over pressures from 5 to 20 mtorr and power inputs from 0.2 to 0.5 kW. In this study, both a two-dimensional (2-D) fluid model simulation and global model calculation are compared, The 2-D fluid model simulation with a self-consistent power deposition is developed to describe the Ar plasma behavior as well as predict the plasma parameter distributions, Finally, a quantitative comparison between the global model and the fluid model is made to test their validity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based upon the spatially inhomogeneous Boltzmann equation in two-term approximation coupled with electromagnetic and fluid model analysis for the recently developed inductively coupled plasma sources, a self-consistent electron kinetic model is developed. The electron distribution function, spatial distributions of the electron density and ionization rate are calculated and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A time averaged two-dimensional fluid model including an electromagnetic module with self-consistent power deposition was developed to simulate the transport of a low pressure radio frequency inductively coupled plasma source. Comparsions with experiment and previous simulation results show, that the fluid model is feasible in a certain range of gas pressure. In addition, the effects of gas pressure and power input have been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using spatially averaged global model, we succeed in obtaining some plasma parameters for a low pressure inductively coupled plasma source of our laboratory. As far as the global balance is concerned, the models can give reasonable results of the parameters, such as the global electron temperature and the ion impacting energy, etc. It is found that the ion flow is hardly affected by the neutral gas pressure. Finally, the magnetic effects are calculated by means of the method. The magnetic field can play an important role to increase plasma density and ion current.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to develop the ultra-large scale integration(ULSI), low pressure and high density plasma apparatus are required for etching and deposit of thin films. To understand critical parameters such as the pressure, temperature, electrostatic potential and energy distribution of ions impacting on the wafer, it is necessary to understand how these parameters are influenced by the power input and neutral gas pressure. In the present work, a 2-D hybrid electron fluid-particle ion model has been developed to simulate one of the high density plasma sources-an Electron Cyclotron Resonance (ECR) plasma system with various pressures and power inputs in a non-uniform magnetic field. By means of numerical simulation, the energy distributions of argon ion impacting on the wafer are obtained and the plasma density, electron temperature and plasma electrostatic potential are plotted in 3-D. It is concluded that the plasma density depends mainly on both the power input and neutral gas pressure. However, the plasma potential and electron temperature can hardly be affected by the power input, they seem to be primarily dependent on the neutral gas pressure. The comparison shows that the simulation results are qualitatively in good agreement with the experiment measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat transfer from plasma to a nonspherical partical in the free-molecular regime is studied in the present paper under thin plasma sheath condition. Analytical expressions for the floating potential charge and heat fluxes of an ellipsoid particle of revolution are derived and curves are given for key parameters for arbitrary plasma flow direction. On the basis of these results, an equivalent sphere with the same surface area as the nonspherical particle is suggested to be used for calculating the total heat flux of nonspherical particle in engineering application with acceptable accuracy. Furthermore, the effects of particle rotation, which occurs in most aerosol systems, on the heat transfer are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been predicted that the floating potential of particles in plasma may become positive when the particle surface temperature is high enough, but, to our knowledge, no positive floating potential has been obtained yet. In the present paper the floating potential theory of high-temperature particles in plasma is developed to cover the positive potential range for the first time, and a general approximate analytical formula for the positive floating potential with a thin plasma sheath and subsonic plasma flow is derived from the new model recently proposed by the authors. The results show that when the floating potential is positive, the net flux of charge incident on the particle approaches a constant similar to the 'electron saturation' phenomena in the case of the electric probes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model and approximate analysis for the energy distribution of an ac plasma arc with a moving boundary is developed. A simplified electrical conductivity function is assumed so that the dynamic behavior of the arc may be determined, independent of the gas type. The model leads to a reduced set of non-linear partial differential equations which governs the quasi-steady ac arc. This system is solved numerically and it is found that convection plays an important role, not only in the temperature distribution, but also in arc disruptions. Moreover, disruptions are found to be influenced by convection only for a limited frequency range. The results of the present studies are applicable to the frequency range of 10-10(2) Hz which includes most industry ac arc frequencies. (C) 1994 Academic Press, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the plasma processing of ultrafine particles of material, the heat transfer and force are considerably affected by particle charging. In this communication a new model, including thermal electron emission and incorporating the effect of electric field near the particle surface, is developed for metallic spherical particles under the condition of a thin plasma sheath. Based on this model, the particle floating potential, and thus the heat transfer and force, can be detemined more accurately and more realistically than previously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Describes a series of experiments in the Joint European Torus (JET), culminating in the first tokamak discharges in deuterium-tritium fuelled mixture. The experiments were undertaken within limits imposed by restrictions on vessel activation and tritium usage. The objectives were: (i) to produce more than one megawatt of fusion power in a controlled way; (ii) to validate transport codes and provide a basis for accurately predicting the performance of deuterium-tritium plasmas from measurements made in deuterium plasmas; (iii) to determine tritium retention in the torus systems and to establish the effectiveness of discharge cleaning techniques for tritium removal; (iv) to demonstrate the technology related to tritium usage; and (v) to establish safe procedures for handling tritium in compliance with the regulatory requirements. A single-null X-point magnetic configuration, diverted onto the upper carbon target, with reversed toroidal magnetic field was chosen. Deuterium plasmas were heated by high power, long duration deuterium neutral beams from fourteen sources and fuelled also by up to two neutral beam sources injecting tritium. The results from three of these high performance hot ion H-mode discharges are described: a high performance pure deuterium discharge; a deuterium-tritium discharge with a 1% mixture of tritium fed to one neutral beam source; and a deuterium-tritium discharge with 100% tritium fed to two neutral beam sources. The TRANSP code was used to check the internal consistency of the measured data and to determine the origin of the measured neutron fluxes. In the best deuterium-tritium discharge, the tritium concentration was about 11% at the time of peak performance, when the total neutron emission rate was 6.0 × 1017 neutrons/s. The integrated total neutron yield over the high power phase, which lasted about 2 s, was 7.2 × 1017 neutrons, with an accuracy of ±7%. The actual fusion amplification factor, QDT was about 0.15