110 resultados para neutrophil oxidative burst


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline was used as a nonmetal catalyst in the oxidative dehydrogenation of ethylbenzene and yield of 22.9% at 573 K and similar to 40% at 673 K were obtained, respectively. An indirect oxidative dehydrogenation mechanism was proposed based on the results of pulse reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

convenient and efficient synthesis of spiro-fused pyrazolin-5-one N-oxides starting from readily available 1-carbamoyl-1-oximylcycloalkanes is developed. This general protocol features a novel and facile way for access to the five-membered azaheterocycles by formation of a new N-N single bond. The key cyclization step utilizes the formation of an N-oxonitrenium intermediate, mediated by the hypervalent iodine reagent PIFA, and its subsequent intramolecular trapping by the amide moiety under rather mild experimental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The product selectivity can be controlled by adding acetic acid in feed over vanadium phosphate (VPO) in gas phase oxidative dehydrogenation (ODH), in which cyclohexane and cyclohexene are oxidized to cyclohexene and 1,3-cyclohexadiene (1,3-CHD), respectively, at almost 100% selectivity. This approach is also an efficient method to capture the very unstable intermediates in the mechanism study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

alpha(1)-VOPO4, alpha(II)-VOPO4 and beta-VOPO4 have been investigated as catalysts for the gas phase oxidative dehydrogenation (ODH) of cyclohexane to cyclohexene with the addition of acetic acid (HOAc) in the feeds in a fixed bed reactor. Different VOPO4 phases showed different acidity and reducibility. beta-VOPO4 phase is more active than alpha(I)-VOPO4 and alpha(II)-VOPO4 in the ODH without acetic acid addition. In the presence of acetic acid, the acidity of the catalyst may play an important role in the ODH process. Due to higher acidity, alpha(I)-VOPO4 phase catalyst gives better catalytic performances than alpha(I)-VOPO4 and beta-VOPO4 for the ODH of cyclohexane by adding of acetic acid in the reactants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of adding acetic acid on the product distribution in gas phase oxidative dehydrogenation of cyclohexane over alpha(1)-VOPO4 catalyst was investigated. The role of acetic acid in the reaction process was put forward. The proposed mechanism is that acetic acid take precedence of cyclohexane adsorbing on the active sites of alpha(1)-VOPO4 catalyst to form isolated active site. Thus, cyclohexene species can desorb quickly from the active sites, avoiding its deep oxidation dehydrogenation. Almost 100% selectivity to cyclohexene could be obtained when the molar ratio of acetic acid to cyclohexane was 12.9:1 at 450 degrees C, the conversion of cyclohexane was 6.9%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By [2 + 2] Schiff base condensation of 5 - bromo - 2 - methoxylbenzene - 1,3 - dicarboxaldehyde with diethylenetriamine, a new hexaaza 24 - membered macrocyclic ligand was obtained,which formed a macrocyclic binuclear copper(I) complex in the presence of [Cu . (CH3CN)(4)]ClO4. When the copper(I) complex was oxidized in air or oxygen, a new macrocyclic binuclear copper( II) complex was obtained. The copper( II.) complex was characterized by several methods and its oxidized products was characterized by H-1 NMR. The results show that during oxidation, a methoxyl group in the ligand ring broke; and the phenoxy - and water - bridged Cu(II) complex formed. In oxidation of monooxygenase such as ligninase, oxidative demethylation also happened. Therefore this work mimicked this process for the first time by using macrocyclic complex. The quantity of absorbed oxygen and the absorption rate of oxygen were determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The correlations of the calcination temperature, structure and catalytic activity for the oxidative coupling of methane on the LiLa0.5Ti0.5O2+lambda catalysts whose main phase and major active phase is Perovskite-type ternary complex oxide LaTi1-yLiyO3-lambda have been studied. The surface and bulk structures of the catalysts were characterized by means of XRD, XPS, IR, BET and so on, The results cleary indicated that the effect of calcination temperature on the activity for the oxidative coupling of methane is twofold. On one hand, it is favorable for Li+ substitution for Ti3+ to enter into the lattice of LaTiO3 and produce more oxygen vacancies in which active oxygens are formed; however, excessively high calcination temperature make the amount of Li+ substitution for Ti3+ lower, due to a little change of structure or phases for the catalyst. On the other hand, the conversion of CH4 drops because of the decrease of surface area, when the calcination temperature is raised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CO2-TPD was used to study the surface basicity of La-Me-O mixed oxides and O-2-TPD, CH4-TPD were employed to study the surface active oxygen species. Comparing the CO2-TPD with O-2-TPD, we can see that the basicity of catalyst is in parallel with the catalystic activity. The stronger basicity is more profitable for the catalyst to adsorb oxygen to form active oxygen species and to activate CH4 by breaking a C-H bond, By comparing the catalytic activity, the results showed that La-Ba-O(La/Ba=7/3) catalyst had the strongest basicity, and it gave the highest CH4 conversion and C-2 selectivity, The results from the pulse reaction showed that the lattice oxygen participated in the OCM reaction without gas oxygen, and it was the selective oxygen species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The composition and structures of Li-Ti-La mixed oxides as well as their catalytic activity for methane oxidative coupling have been studied by means of XRD XPS, IR, SEM and so on. The results indicate that by changing x value in Li-La1-xTixO2 oxides phas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of Li content in a series of multicomponent oxides LixLa0.5Ti0.5 For methane oxidative coupling has been studied. The catalytic activities of LiLa0.5Ti0.5 catalyst before and after washing with boiling water have been compared. The surface and

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coupling selectivity was greatly enhanced by adding Li to La2O3, compared with the single La2O3. The O2- species was found on the Li/La2O3 but not on the single La2O3. In low-temperature desorption, ethane desorbed from the Li/La2O3 but was not detected with the single La2O3. It is considered that the addition of Li gave rise to some basic sites which are favorable for the coupling reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel doping phenomenon of fully reduced polyaniline and poly-o-methyl-aniline, "light-assisted oxidative doping", was found for the first time. The doping reaction was followed by FTIR, UV-VIS, ESR and electrical conductivity measurements. It was shown that the fully reduced polyanilines in the form of HCl-salts undergo a spontaneous transition from an insulator or semiconductor to a conductor when exposed to air and light, and their final molecular chain structures are analogous to those found in HCl-doped common polyanilines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative dehydroaromatization of propylene was investigated by the pulse technique over two kinds of single oxide catalysts. With the Bi2O3 catalyst, the main dimer product was 1,5-hexadiene, and the dimerization activity was stable to pulse number even if the catalyst was partly reduced to the bulk. With the CeO2 catalyst, benzene was mainly formed instead of 1,5-hexadiene, but the activity decreased rapidly with increasing pulse number, indicating that only the lattice oxygen near the catalyst surface could be used for oxidative dimerization and the further aromatization. The Bi-Ce-O system catalyst was found in this study to give higher aromatization activity and showed better stability, compared to the Bi-Sn-O catalyst. Although the Bi-Ce-O catalyst was only a mixture of the two component oxides from X-ray diffraction analysis, there was a significant combination effect on the selectivity to benzene. The highest and the most stable selectivity of benzene was obtained at Bi/Ce = 1. In the TPD spectrum of Bi-Ce-O catalyst, there are not only the lattice oxygen (beta-oxygen) over 620-degrees-C due to the reduction of Bi2O3, but also a great deal of the alpha-oxygen desorbed about 400-degrees-C, which is considered the absorbed oxygen in the bulk. This absorbed oxygen could probably be a compensation of the lattice oxygen through the route of gaseous --> absorbed --> lattice oxygen in the binary catalyst system. By the kinetic study on the Bi-Ce-O catalyst, the dimer formation rate was the first-order with respect to the partial pressure of propylene and zero-order of oxygen. Although detail investigation would be made further, it was considered that the complete oxidation of propylene would mainly take place parallelly on some different sites, and the rate-determining step of propylene dimerization occurred probably between an adosrbed propylene and a gaseous one by an Eley-Rideal type mechanism.