92 resultados para multiple photon infrared excitation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fluorescence and up-conversion spectral properties of Er3+-doped TeO2-ZnO and TeO2-ZnO-PbCl2 glasses suitable for developing optical fiber amplifier and laser have been fabricate and characterized. Strong green (around 527-550 nm) and red (around 661 nm) up-conversion emissions under 977 nm laser diode excitation were investigated, corresponding to H-2(11/2), S-4(3/2), --> I-4(15/2) and F-4(9/2) --> I-4(15/2) transitions of Er3+ ions respectively, have been observed and the involved mechanisms have been explained. The dependence of up-converted fluorescence intensity versus laser power confirm that two-photons contribute to up-conversion of the green-red emissions. The novelty of this kind of optical material has been its ability in resisting devitrification, and its promising optical properties strongly encourage for their further development as the rare-earth doped optical fiber amplifiers and upconversion fiber laser systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent Ni2+-doped MgO-Al2O3-TiO2-SiO2 glass ceramics were prepared, and the optical properties of Ni2+-doped glass ceramics were investigated. Broadband emission centered at 1320 nm was observed by 980 nm excitation. The longer wavelength luminescence compared with Ni2+-doped Li2O-Ga2O3-SiO2 glass ceramics is ascribed to the low crystal field hold by Ni2+ in MgO-Al2O3-TiO2-SiO2 glass ceramics. The change in optical signals at the telecommunication bands with or without 980 nm excitation was also measured when the seed beam passes through the bulk gain host.(C) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient near-infrared (NIR) quantum cutting (QC) in GdAl3(BO3)(4):RE3+,Yb3+ (RE=Pr, Tb, and Tm) phosphors has been demonstrated, which involves the conversion of the visible photon into the NIR emission with an optimal quantum efficiency approaching 200%, by exploring the cooperative downconversion mechanism from RE3+ (RE=Pr, Tb, and Tm) excitons to the two activator ions, Yb3+. The development of NIR QC phosphors could open up a new approach in achieving high efficiency silicon-based solar cells by means of downconversion in the visible part of the solar spectrum to similar to 1000 nm photons with a twofold increase in the photon number. (c) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Er3+-doped halide modified tellurite glasses were synthesized by conventional melting and quenching method. The Judd-Ofelt analysis was performed on the absorption spectra and the transition probabilities, excited state lifetimes, and the branching ratios were calculated and discussed. The intense infrared and visible fluorescence spectra under 980 nm excitation were obtained. Strong upconversion signal was observed at pumping power as low as 30 mW in the glasses with halide ions. The upconversion mechanisms and power dependent intensities were discussed, which showed two-photon process are involved for the green and red emissions. The decay times of the emitting states and the corresponding quantum efficiency were determined and explained. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infrared-to-visible upconversion fluorescence of Er(3+)/Yb(3+) co-doped lithium-strontium-lead-bismuth (LSPB) glasses for developing potential upconversion lasers has been studied under 975-nm excitation. Based on the results of energy transfer efficiency and upconversion spectra, the optimal Yb(3+)-Er(3+) concentration ratio is found to be 5:1. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H_(11/2)-->4I_(15/2), 4S_(3/2)-->4I_(15/2), and 4F_(9/2)-->4I_(15/2), respectively, were observed. The quadratic dependence of the 525-, 546-, and 657-nm emissions on excitation power indicates that a two-photon absorption process occurs under 975-nm excitation. The high-populated 4I_(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. The intense upconversion luminescence of Er(3+)/Yb(3+) co-doped LSPB glasses may be a potentially useful material for developing upconversion optical devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Er3+-doped lithium-barium-lead-bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Omega(t) (t = 2, 4, 6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Omega(2) = 3.05 x 10(-20) cm(2), Omega(4) = 0.95 x 10(-20) cm(2), and Omega(6) = 0.39 x 10(-20) cm(2). Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The upconversion mechanisms are discussed based on the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the intense upconversion processes. The intense upconversion luminescence of Er3+-doped lithium-barium-lead-bismuth glass may be a potentially useful material for developing upconversion optical devices. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infrared-to-visible upconversion fluorescence property of Er3+/Yb3+ codoped novel bismuth-germanium glass under 975 nm LD excitation has been studied. Intense green and red emissions centered at 525, 546 and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The quadratic dependence of the 525, 546 and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs. The structure of the bismuth-germanium glass has been investigated by peak-deconvolution of FT-Raman spectrum, and the structural information was obtained from the peak wavenumbers. This novel bismuth-germanium glass with low maximum phonon energy (similar to 750 cm(-1)) can be used as potential host material for upconversion lasers. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the structural and infrared-to-visible upconversion fluorescence properties of Er3(+)/Yb3+-codoped lead-free germanium-bismuth glass. The structure of lead-free germanium-bismuth-lanthanum glass is investigated by peak-deconvolution of Raman spectroscopy. Intense green and red emissions centred at 525, 546, and 657nm, corresponding to the transitions H-2(11/2) -> (IT15/2)-I-4 -> S-4(3/2) -> 4I(15/2), and F-4(9/2) -> I-4(15/2), respectively, are observed at room temperature. The quadratic dependence of the 525, 546, and 657nm emissions on excitation power indicates that a two-photon absorption process occurs under 975nm excitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural and infrared-to-visible upconversion fluorescence properties of Er3+/Yb3+-codoped oxychloride lead-germanium-bismuth glass have been studied. The Raman spectrum investigation indicates that PbCl2 plays an important role in the formation of glass network, and has an important influence on the upconversion luminescence owing to lower phonon energy. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2)-->I-4(15/2,) I-4(3/2)-->I-4(15/2), and F-4(9/2)-->I-4(15/2), respectively, were observed at room temperature. The quadratic dependence of the 525, 546, and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs under 975 nm excitation. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorophosphate glasses codoped with Tm3+ and Yb3+ were prepared and their thermal stability, phonon states, and upconversion properties were studied. It is found that the increment of phosphate content is good for the thermal stability but increases the phonon density of states. However, the phonon density of states of these fluorophosphate glasses is very low due to the low phosphate content in their composition. The upconversion luminescence spectra were measured under excitation of 970 nm laser diode, and the intense blue (476 nm) and near infrared (794 nm) emission were simultaneous obtained at room temperature. The sensitizing mechanisms of Yb3+ to Tm3+ for blue and red emission contain both sequential and cooperative sensitization. The near infrared emission is a two-photon upconversion process. These researches suggest that when the phosphate content in the composition is low enough, fluorophosphate glass can be suitable host material of Tm3+ codoped with Yb3+ for blue and near infrared upconversion luminescence. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural and infrared-to-visible upconversion fluorescence properties in ytterbium-sensitized erbrium-doped novel lead-free germanium bismuth-lanthanum glass have been studied. The structure of lead-free germanium-bismuth-lanthanum glass was investigated by peak-deconvolution of Raman spectrum, and the structural information was obtained from the peak wavenumbers. Intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The quadratic dependence of the 525, 546, and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs under 975 nm excitation. This novel lead-free germanium-bismuth-lanthanum glass with low maximum phonon energy (similar to 751 cm(-1)) can be used as potential host material for upconversion lasers. (c) 2005 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The near-IR emission spectra of Er3+-Tm3+ codoped 70GeS(2)-20In(2)S(3)-10CsI chalcohalide glasses were studied with an 808 nm laser as an excitation source. A broad emission extending from 1.35 to 1.7 mu m with a FWHM of similar to 160 nm was recorded in a 0.1 mol.% Er2S3, 0.5 mol.% Tm2S3 codoped chalcohalide glass. The fluorescence decay curves of glasses were measured by monitoring the emissions of Tm3+ at 1460 nm and Er3+ at 1540 nm, and the lifetimes were obtained from the first-order exponential fit. The luminescence mechanism and the possible energy-transfer processes are discussed with respect to the energy-level diagram of Er3+ and Tm3+ ions. (C) 2008 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on cooperative downconversion in Yb3+-RE3+ (RE = Tm or Pr) codoped lanthanum borogermanate glasses (LBG), which are capable of splitting a visible photon absorbed by Tm3+ or Pr3+ ions into two near-infrared photons. The results indicate that Pr3+-Yb3+ is a more efficient ion couple than Tm3+-Yb3+ in terms of cooperative downconversion. We have obtained a highest quantum yield of 165% and 138% for Pr3+-Yb3+ and Tm3+-Yb3+ codoped LBG glasses under 468 nm excitation, respectively. However, ultraviolet light excitation to the charge transfer band of Yb3+ does not result in quantum splitting as rapid relaxation from the charge transfer band to 4f(13) levels of Yb3+ dominates. (C) 2008 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GeGaSKBr glass with Bi ions as emission centers were fabricated. An intense emission centered at around 1230 nm with the width of more than 175 nm was observed by 808 nm photo-excitation of the glass. Lower quenching rate and thermal treatment promote micro-crystallization process, thus strengthening the emission. Crown Copyright (c) 2008 Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yb-Bi codoped phosphate glass was prepared and its properties were compared with Bi-doped phosphate glass. The broadband infrared luminescence intensity from Yb-Bi codoped glass was similar to 32 times stronger than that of Bi-doped glass. The single-pass optical amplification was measured on a traditional two-wave mixing configuration. No optical amplification was observed in Bi-doped glass, while apparent broadband optical amplification between 1272 and 1336 nm was observed from Yb-Bi codoped glass with 980 nm laser diode excitation. The highest gain coefficient at 1272 nm of Yb-Bi codoped glass reached to 2.62 cm(-1). Yb-Bi codoped phosphate glass is a promising material for broadband optical amplification. (C) 2008 American Institute of Physics.