91 resultados para generator coordinate Hartree-Fock method
Resumo:
利用Skyrme有效相互作用对自旋极化的同位旋对称核物质和中子物质的特性进行了研究 .用 4种核子 -核子相互作用参数SⅢ ,SKM ,SLy2 30a和SLy2 30b ,分别描绘了核物质状态方程曲线 .可以发现不论使用哪一种参数 ,在自旋极化的同位旋对称核物质和中子物质中都存在着磁化相变转换点 .另外还对磁化系数进行了计算 ,给出了磁化系数比率随密度的变化关系 ,由于无限不连续点的存在 ,进一步肯定了在Skyrme Hartree Fock理论框架内两种物质会出现磁化相变转换点
Resumo:
通过引进基态关联和同位旋自由度的区分 ,推广了Brueckner Hartree Fock理论方法 ,并应用于同位旋非对称核物质 ,系统地研究了在整个同位旋自由度范围内核物质的状态方程和单粒子特性及其同位旋效应 .还研究了微观三体核力对同位旋非对称核物质性质及其同位旋效应的影响 ,定量讨论了三体力效应与相对论性平均场理论及Dirac Brueckner方法的联系 .主要给出了同位旋相关的Brueckner Hartree Fock方法的基本理论和计算公式
Resumo:
用中国原子能科学研究院HI 13串列加速器提供的 90和 130MeV的Br离子和束箔技术 ,研究了波长在 13— 2 9nm范围内Br的类Mg离子的光谱 .识别出 2 4条属于BrXXIV的“3,3”跃迁 ,即 3s2 ,3s3p ,3p2 ,3s3d和 3p3d组态之间的跃迁谱线 ,其中 19条以前未见报道 .基于实验跃迁谱线 ,19个观测能级得以确立 ,其中有 14个能级此前未见报道 .相对论Hartree Fock(HFR)方法的计算结果对所观测的能级进行了解释 .
Resumo:
利用扩展的 Brueckner- Hartree- Fock理论与推广的 BCS方法研究了自能的色散效应和基态关联对中子物质中超流性和能隙的影响 .研究结果表明 ,自能的色散效应使中子物质中能隙减小 ;考虑基态关联后 ,超流性将进一步减弱 .
Resumo:
基于扩展的Skyrme有效相互作用 ,在Hartree Fock近似下对非对称核物质的化学不稳定性与力学不稳定性进行了研究 ,并与简单的三参数势 ,即所谓的软势与硬势的计算结果进行了比较 .结果发现两种模型给出的非对称核物质化学不稳定性与力学不稳定性之间的关系是完全不同的 .通过研究化学不稳定性在临界温度附近的行为发现 ,对软势与硬势 ,化学不稳定性可能出现在温度高于临界温度的气化 (全爆炸 )机制中 .而对于SKM势参数 ,化学不稳定性不会出现在温度高于临界温度的气化 (全爆炸 )机制中 .这种差别也反映在压强 密度平面上力学不稳定区与化学不稳定区的位置关系上 .进一步的计算表明 ,这种差别是由于两种模型给出的单粒子势的密度依赖形式的不同而导致的 ,这必将体现在重离子碰撞的现象中 ,从而可以作为提取核物质状态方程密度依赖形式的探针
Resumo:
利用Hartree Fock理论 ,基于扩展的Skyrme有效相互作用 ,采用抛物线近似下对称能的密度相关形式以及 β平衡和电中性条件 ,给出了中子星中质子比例的密度依赖关系 .通过比较不同的势参数SII,SIII,SKM和SKI5下对称能强度系数的密度依赖关系研究了中子星中的质子比例 ,发现在高密时势参数SII,SIII和SKM能够给出中子星中质子消失的结果 ,这预示着致密核物质可能存在纯中子物质的基态 .同时计算表明 ,考虑中子星中 μ- 子的贡献后使质子比例增加 .
Resumo:
在扩展的Skyrme有效相互作用下 ,利用Hartree Fock理论研究了同位旋激发能与温度、密度的关系 .结果表明同位旋激发能随密度的降低以及温度的增加而降低 .同时研究了对称能与同位旋激发能的关系 ,指出对称能是同位旋激发能的一部分 ,且占相当大的比重 .最后研究了不同的势参数下 ,同位旋激发能随相对中子过剩的变化关系 ,发现同位旋激发能较强地依赖于对称能强度系数 ,而对不可压缩系数以及有效质量不太敏感 .从而为实验上通过研究同位旋激发能来提取核物质状态方程中的对称能部分指出了一条途径
Resumo:
基于扩展的Skyrme有效相互作用 ,在Hartree Fock近似下 ,研究了激发能与温度、密度的关系 .计算结果与ALADIN小组的实验结果十分符合 .并指出ALADIN量热曲线中的温度平台是由压缩激发能所致 .这说明出现液 气相变并不是ALADIN量热曲线的唯一解释 .从而对ALADIN量热曲线提出了一种新解释 .
Resumo:
To evaluate the radiative electron capture for the collisions of U89+ ion with N-2, radiative recombination cross sections and the corresponding emitted photon energies are calculated from the ground state 1s(2)2s to 1s(2)2snl(j) (2 <= n <= 9, 0 <= l <= 6) using the newly developed relativistic radiative recombination program RERR06 based on the multiconfiguration Dirac-Fock method. The x-ray spectra for radiative electron capture in the collision have been obtained by convolving the radiative recombination cross sections and the Compton profile of N2. Good agreement is found between the calculated and experimental spectra. In addition, the transition energy levels and probabilities among the 147 levels from the captured 1s(2)2snl(j) have been calculated. From the calculated results, radiative decay cascade processes followed by the radiative electron capture have also been studied with the help of multistep model and coupled rate equations, respectively. The present results not only make us understand the details of the radiative electron captures and the radiative decay cascade spectra in the experiment but also show a more efficient way to obtain the cascade spectra. Finally, the equivalence between the multistep model and coupled rate equations has been shown under a proper condition and the latter can hopefully be extended to investigate other cascade processes.
Resumo:
The photoabsorption processes of Au2+, Au3+, and Au4+ have been investigated experimentally and theoretically in the 70-127 eV region. Using the dual laser-produced plasma technique, the 4f and 5p photoabsorption spectrum has been recorded at 50 ns time delay and was found to be dominated by a great number of lines from 4f-5d, 6d and 5p-5d, 6s transitions, which have been identified by comparison with the aid of Hartree-Fock with configuration interaction calculations. The characteristic feature of the spectrum is that satellite lines from excited configurations containing one or two 6s electrons are more important than resonance lines, and with increasing ionization, satellite contributions from states with one 6s spectator electron gradually become more important than those with two 6s spectator electrons. Based on the assumption of a normalized Boltzmann distribution among the excited states and a steady-state collisional-radiative model, we succeeded in reproducing a spectrum which is in good agreement with experiment.
Resumo:
We have investigated the isospin dependence of the neutron and proton (PF2)-P-3 superfluidity in isospin-asymmetric nuclear matter within the framework of the Brueckner-Hartree-Fock approach and the BCS theory. We show that the (PF2)-P-3 neutron and proton pairing gaps depend sensitively on isospin asymmetry of asymmetric nuclear matter. As the isospin asymmetry increases, the neutron (PF2)-P-3 superfluidity becomes stronger and the peak value of the neutron (PF2)-P-3 pairing gap increases rapidly. The isospin dependence of the proton (PF2)-P-3 superfluidity is shown to be opposite to the neutron one. The proton (PF2)-P-3 superfluidity becomes weaker at a higher asymmetry and it even vanishes at high enough asymmetries. At high asymmetries, the neutron (PF2)-P-3 superfluidity turns out to be much stronger than the proton one, implying that the neutron (PF2)-P-3 superfluidity is dominated in the highly asymmetric dense interior of neutron stars.
Resumo:
The cross sections of the 18 electron photoionization and corresponding shake-up processes for Li atoms in the ground state 1s(2)2s and excited states 1s(2)2p, 1s(2)3p, 1s(2)3p and 1s(2)3d are calculated using the multi-configuration Dirac-Fock method. The latest experimental photoelectron spectrum at hv = 100 eV [Cubaynes D et al. Phys. Rev. Lett. 99 (2007) 213004] has been reproduced by the present theoretical investigation excellently. The relative intensity of the shake-up satellites shows that the effects of correlation and relaxation become more important for the higher excited states of the lithium atom, which are explained very well by the spatial overlap of the initial and final state wavefunctions. In addition, strong dependence of the cross section on the atomic orbitals of the valence electrons are found, especially near the threshold.
Resumo:
We perform a systematic calculation of the equation of state of asymmetric nuclear matter at finite temperature within the framework of the Brueckner-Hartree-Fock approach with a microscopic three-body force. When applying it to the study of hotka on condensed matter, we find that the thermal effect is more profound in comparison with normal matter, in particular around the threshold density. Also, the increase of temperature makes the equation of state slightly stiffer through suppression of kaon condensation.
Resumo:
We investigate the effect of microscopic three-body forces on the P-3 F-2 neutron superfluidity in neutron matter, beta-stable neutron star matter, and neutron stars by using the BCS theory and the Brueckner-Hartree-Fock approach. We adopt the Argonne V18 potential supplemented with a microscopic three-body force as the realistic nucleon-nucleon interaction. We have concentrated on studying the three-body force effect on the P-3 F-2 neutron pairing gap. It is found that the three-body force effect considerably enhances the P-3 F-2 neutron superfluidity in neutron star matter and neutron stars.
Resumo:
The 4d photoabsorption spectra of I2+, I3+, and I4+ have been obtained in the 70-127 eV region with the dual laser-produced plasma technique at time delays ranging from 400 to 520 ns. With decreasing time delay, the dominant contribution to the spectra evolves from the I2+ to the I4+ ions, and each spectrum contains discrete 4d-nf transitions and a broad 4d-epsilon f shape resonance, which are identified with the aid of multiconfiguration Hartree-Fock calculations. The excited states decay by direct autoionization involving 5s or 5p electrons, and rates for the different processes and resulting linewidths were calculated. With increasing ionization, the 4d-epsilon f shape resonance become intense and broader in going from I2+ to I3+, and then vanishes at I5+. In addition, the discrete structure of the calculated spectrum of each ion gradually approaches the corresponding shape resonance position. Based on the assumption of a normalized Boltzmann distribution among the excited states and a steady-state collisional-radiative model, we reproduced spectra which are in good agreement with experiment.