65 resultados para enzymatic hydrolysis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficient cleavage of plasmid DNA ( pCAT) by binuclear lanthanide complexes was investigated. At 37 degrees C and neutral pH, both Ho23+L and Er23+L promoted 100% conversion of supercoiled plasmid to the nicked circular form and linear form in 1 h. The corresponding saturation kinetics curve of cleavage of pCAT plasmid by binuclear lanthanide complexes showed the expected increase with catalyst concentration. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blend films of poly(epsilon-caprolactone) (PCL) and poly(DL-lactide) (PDLLA) with 0.5 weight fraction of PCL were prepared by means of solution casting and their degradation behavior was studied in phosphate buffer solution containing Pseudomonas (PS) lipase. Enzymatic degradation of the blend films occurred continuously within the first 6 days and finally stopped when the film weight loss reached 50%, showing that only PCL in the blends degraded under the action of PS lipase in the buffer solution. These results indicate the selectivity of PS lipase on the promotion of degradation for PCL and PDLLA. The thermal properties and morphology of the blend films were investigated by differential scanning calorimetry, wide-angle X-ray diffraction and scanning electron microscopy (SEM). The morphology resulting from aggregate structures of PCL in the blends was destroyed in the enzymatic degradation process, as observed by SEM. These results confirm again the enzymatic degradation of PCL in the blends in the presence of PS lipase. (C) 1999 Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A successful micronization of water-insoluble poly(epsilon-caprolactone) (PCL) into narrowly distributed nanoparticles stable in water has not only enabled us to study the enzymatic biodegradation of PCL in water at 25 degrees C by a combination of static and dynamic laser light scattering (LLS), but also to shorten the biodegradation time by a factor of more than 10(3) compared with using a thin PCL film, i.e. a 1 week conventional experiment becomes a 4 min one. The time-average scattering intensity decreased linearly. It was interesting to find that the decrease of the scattering intensity was not accompanied by a decrease of the average size of the PCL nanoparticles, indicating that the enzyme, Lipase Pseudomonas (PS), ''eats'' the PCL nanoparticles one-by-one, so that the biodegradation rate is determined mainly by the: enzyme concentration. Moreover, we found that using anionic sodium lauryl sulphate instead of cationic hexadecyltrimethylammonium bromide as surfactant in the micronization can prevent the biodegradation, suggesting that the biodegradation involves two essential steps: the adsorption of slightly negatively charged Lipase PS onto the PCL nanoparticles and the interaction between Lipase PS and PCL. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complexes of a series of rare earths with Ge-132 have been prepared. The carboxyl anions of Ge-132 molecule were coordinated to rare earth ion with chelate style. In the complexes molecule, the GeO3/2 group of Ge-132 were hydrolyzed to become -Ge(OH)(3) group, and later does:not coordinate with rare earth ions. All of the complexes possess similar properties. In aqueous solution of pH 6 and 50 degrees C, these complexes can obviously selectively catalytically hydrolize the phosphatide bond of 5'-AMP and 5'-dAMP into phosphatic acid and riboside.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lutetium(III) and lanthanum(III) complexes of 2-carboxyethylgermanium sesquioxide (Ge-132) can hydrolyze the phosphodiester linkage of 3',5'-cyclic adenosine monophosphate (cAMP), 3',5'-cyclic deoxyadenosine monophosphate (dcAMP) and 2',3'-cyclic adenosine monophosphate (2',3'-cAMP). Both cAMP and dcAMP are hydrolyzed with high selectivity, yielding predominantly 3'-monophosphates. 2',3'-cAMP is converted to 3'-AMP and 2'-AMP, the ratio of 3'-AMP to 2'-AMP produced being 1.4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cleavage of adenosine-5'-monophosphate (5'-AMP), guanosine-5'-monophosphate (5'-GMP), adenosine-3'-monophosphate (3'-AMP) and guanosine-3'-monophosphate (3'-GMP) by lanthanides was investigated by NMR and the method of measuring the liberated phosphates. Rapid cleavage of both 5'-mononucleotides and 3'-mononucleotides by Ce-III and Ce-IV under air at pH 9 and 37 degrees C was observed. Other lanthanides showed less efficiency for hydrolyzing 5'-mononucleotides but 3'-mononucleotides were catalyzed by a range of lanthanide ions. The mechanism for hydrolyzing 3'-mononucleotides by lanthanides was:investigated. The notable difference in reactivity between Ce-III and the other lanthanide ions under air was further studied showing that the cleavage is enhanced with increasing molar fraction of Ce-IV. The fast cleavage of mononucleotides by Ce-III under air at pH 9 is ascribed to the resultant Ce-IV in the reaction mixture. (C) 1997 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolysis of adenosine-5'-monophosphate and deoxyadenosine-5'-monophosphate has been studied with lanthanide(III) metal complexes of 2-carboxyethylgermanium sesquioxide (Ge-132) by NMR and HPLC and by measuring the liberated inorganic phosphates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method of preparation of stable, homogeneous and controlled thickness TiO2 film through hydrolysis of Ti(OC4H(9))(4) is introduced in detail. The structure and property of the film have been investigated by means of SEM and FT-IR techniques. The strong quenching effect between sensitizing dyes and TiO2 film is observed in their fluorescence spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzymatic degradation of poly(epsilon-caprolactone) (PCL) films in phosphate buffer solution containing lipases has been studied by DSC, WAXD and SEM. Three lipases, pseudomonas lipase (PS), porcine pancreatic lipase (PP), and candida cylindracea lipase (AY), were used. The results showed that the degradation of PCL films in phosphate buffer solution containing PP or AY was very slow: no weight loss could be found within 1 week. However, PCL film could degrade rapidly and completely within 4 days in phosphate buffer solution containing PS lipase. (C) 1997 Elsevier Science Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ytterbium(III) and praseodymium(III) complexes of 2-carboxyethylgermanium sesquioxide (Ge-132) can hydrolyze the phosphodiester linkage of 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic deoxyadenosine monophosphate (dcAMP). Both cAMP and dcAMP are hydrolyzed with high selectivity, yielding predominantly 3'-monophosphates. The selectivity and activity for hydrolyzing cAMP and dcAMP by lanthanide metal(III) complexes and lanthanide metal ions are compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolysis of adenosine-5'-monophosphate(5'-AMP) and guanosine-5'-monophosphate(5'-GMP) by lanthanides was investigated. 5'-AMP and 5'-GMP was efficiently hydrolyzed by cerium(III) chloride under air at pH 9 and 37 degrees C, and other lanthanides (III) showed less efficiency at the same condition. The hydrolysis rate of 5'-AMP by cerium was greater than that of 5'-GMP. UV spectra showed that Ce(III) was oxidized to Ce(IV) in the reaction mixture. The active species for the hydrolysis of 5'-AMP and 5'-GMP was ascribed to the Ce(IV) hydroxide cluster in the reaction mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolysis kinetics of atropine sulphate has been investigated by cyclic voltammetry at the water/nitrobenzene interface. The transfer process is diffusion controlled and the transfer species is a 1:1 proton-atropine complex. Two main factors, pH and temperature, which have notable effects on the hydrolysis rate, are illustrated. The most suitable pH for atropine to be preserved in aqueous solution and related parameters were estimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monotopic membrane proteins are membrane proteins that interact with only one leaflet of the lipid bilayer and do not possess transmembrane spanning segments. They are endowed with important physiological functions but until now only few of them have been studied. Here we present a detailed biochemical, enzymatic and crystallographic characterization of the monotopic membrane protein sulfide:quinone oxidoreductase. Sulfide:quinone oxidoreductase is a ubiquitous enzyme involved in sulfide detoxification, in sulfide-dependent respiration and photosynthesis, and in heavy metal tolerance. It may also play a crucial role in mammals, including humans, because sulfide acts as a neurotransmitter in these organisms. We isolated and purified sulfide:quinone oxidoreductase from the native membranes of the hyperthermophilic bacterium Aquifex aeolicus. We studied the pure and solubilized enzyme by denaturing and non-denaturing polyacrylamide electrophoresis, size-exclusion chromatography, cross-linking, analytical ultracentrifugation, visible and ultraviolet spectroscopy, mass spectrometry and electron microscopy. Additionally, we report the characterization of its enzymatic activity before and after crystallization. Finally, we discuss the crystallization of sulfide:quinone oxidoreductase in respect to its membrane topology and we propose a classification of monotopic membrane protein crystal lattices. Our data support and complement an earlier description of the three-dimensional structure of A. aeolicus sulfide:quinone oxidoreductase (M. Marcia, U. Ermler, G. Peng, H. Michel, Proc Natl Acad Sci USA, 106 (2009) 9625-9630) and may serve as a reference for further studies on monotopic membrane proteins. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

琼胶是一种从石花菜等红藻中提取的,目前生产工艺和结构等方面研究比较成熟的海藻多糖,广泛应用于医药、仪器等行业。但是,海藻多糖因为具有分子量大,粘度大,溶解度较小的等特点,而使其应用范围受到限制。利用降解的手段对其进行修饰,降低分子量和粘度,改善溶解性,可以拓展其应用范围。并且根据文献报道,琼 胶寡糖具有一些特殊的生物活性,如抗氧化性,抗炎症等。因此,对琼胶降解的研究具有生要意义。本研究中,为了选择一种合适的降解方法,进行了几种水解方法的尝试,其中包括在不同湿度和酸度下盐酸水解,过氧化氢和醋酸催化水解,Fenton体系羟基自由基降解。对于酸水解和Fenton体系氧化还原降解方法,通过粘度法对反应的速度进行了比较,表明氧化还原降解反应中琼胶的粘度降低比较快,并且具有代表性和新意,确定为本实验的降解琼胶的方法并对氧化还原降解所得的产物进行了活性实验。通过模仿自然界普遍存在的氧化还原降解反应,利用Vc诱导的Fenton体系产生的羟基自由基氧化还原降解琼胶得到低分子量的琼胶。降解产物经过高速离心、60%乙醇沉淀,除去分子量比较大的降解产物和磷酸盐,得到可溶于60%乙醇的分子量估计小于3000的降争产物,其产率为85%。利用经Sephadex-G25凝胶色谱分离所香的不同分子量的级分进行分子量和α-葡萄糖苷酶抑制活性关系的实验。降解产物对α-葡萄糖苷酶的抑制率和各级分的浓度呈线性正相关,并且各级分的IC_(50)则随着分子量的降低而降低。另外,对所得的降解产物混合物进行了红外吸收光谱、质子去偶核磁共震碳谱和负离子基质辅助激光诱导-飞行时间质谱结构分析。结果表明,氧化还原降解反应的专一性差,在得到寡糖的同时,在光谱图中出现一些比较复杂的副产物的结构信息。最后,根据MTT法的原理,以有体皮肤成纤维细胞为材料,通过紫外线辐射产生自由基造成氧化损伤,研究降解产物对成纤维细胞的保护作用。当无紫外线辐射时,降解产物对成纤维细胞具有显著的促进生长增殖作用:当经UVa、UBb辐射时则可以显著地表现出对损伤的保护作用,并且这种促进生长和保护作用呈显著的量效关系,表明降解产物具有清除基自由基的作用。但是,因为氧化还原降解以应的机理尚不十分明的以及琼羟胶的特殊结构,使得反应的副产物很难预测,也就使得分离工作难以进行,所以,根据目前所得的信息,尚不能确定是降解产物的什么级分产生的以上两种生物活性。