102 resultados para electronic phase transitions
Resumo:
A statistical thermodynamics theory of polydisperse polymer blends based on a lattice model description of a fluid is formulated. Characterization of a binary polydisperse polymer mixture requires a knowledge of the pure polymer system and the interaction energy. It is assumed that the intrinsic and interactive properties of polymer (for example, T*, P*, rho*, and epsilon(ij)*) are independent of molecular size. Thermodynamic properties of ternary and higher order mixtures are completely defined in terms of the pure fluid polymer parameters and the binary interaction energies. Thermodynamic stability criteria for the phase transitions of a binary mixture are shown. The binodal and spinodal of general binary systems and of special binary systems are discussed.
Resumo:
The C-H stretching, C-H bending, C-C stretching and the low-frequency vibration regions have been investigated by Raman spectroscopy for [n-CnH2n+1NH3]2 ZnCl4 with n=7 approximately 12, 16. It is found that their frequency and relative intensities are related to the length of carbon chain in the molecules and present the odd-even effect to carbon atom numbers in chain. Some changes in spectra are interpreted in terms of the different molecular packing and interaction of chain.
Resumo:
The C-H stretching, C-H bending, C-C stretching and the low-frequency vibrational regions have been investigated by Raman spectroscopy for [n-CnH2n+1NH3]2ZnCl4 with n = 7-12, 16. The frequencies and relative intensities are related to the length of the carbon chain in the molecules and present the odd-even effect of the carbon atom numbers in the chains. Some changes in the spectra are interpreted in terms of the different molecular packing.
Resumo:
The thermal stability and the solid solid phase transitions in Ills compounds with n = 7-12 have been studied by DSC and TG methods. Comparision with CnZn compounds want made. The nature of three phases of CnCu has been discussed in terms of infrared spectroscopy and the assignment of the phase transitions has been given. The thermal stability of CnCu is lower than that of CnZn and presents an obvious odd even effect. All of these compounds exhibit two solid solid phase transitions in the temperature range of 248-337 K. The peak tempe nature of phase transitions changes regularly. The peak temperature or the main phase transition increases with the chain length. The total transition enthalpies and entropies increase with increasing chain length. When n <= 9, the high temperature phase exists in a partial disorder state. When n >= 10, the high temperature phase exists in a conformational disorder state. The main phase transition and the phase transition at 307.7 K of CnCu may mainly are from the change of the packing structure and the change of the partial conformational order-disorder of alkyl chain, respectively.
Resumo:
The low-frequency Raman spectrum of n-decylammonium chloride was measured as a function of temperature in the temperature range from 290 to 340K, and the longitudinal acoustical mode vibration band was assigned. The results showed that there are two phase transitions at 313K and 321K, respectively. The phase transition at 313K is mainly induced by change of hydrocarbon chain conformations, while that at 321K is mainly induced by change of order degree of molecular packing. The results suggest low-frequency Raman spectroscopy is a useful probe of structural phase transition for long-chain compounds.
Resumo:
Fatty acid desaturases are enzymes that introduce double bonds into the hydrocarbon chains of fatty acids. The fatty acid desaturases from 37 cyanobacterial genomes were identified and classified based upon their conserved histidine-rich motifs and phylogenetic analysis, which help to determine the amounts and distributions of desaturases in cyanobacterial species. The filamentous or N-2-fixing cyanobacteria usually possess more types of fatty acid desaturases than that of unicellular species. The pathway of acyl-lipid desaturation for unicellular marine cyanobacteria Synechococcus and Prochlorococcus differs from that of other cyanobacteria, indicating different phylogenetic histories of the two genera from other cyanobacteria isolated from freshwater, soil, or symbiont. Strain Gloeobacter violaceus PCC 7421 was isolated from calcareous rock and lacks thylakoid membranes. The types and amounts of desaturases of this strain are distinct to those of other cyanobacteria, reflecting the earliest divergence of it from the cyanobacterial line. Three thermophilic unicellular strains, Thermosynechococcus elongatus BP-1 and two Synechococcus Yellowstone species, lack highly unsaturated fatty acids in lipids and contain only one Delta 9 desaturase in contrast with mesophilic strains, which is probably due to their thermic habitats. Thus, the amounts and types of fatty acid desaturases are various among different cyanobacterial species, which may result from the adaption to environments in evolution. Copyright (c) 2008 Xiaoyuan Chi et al.
Resumo:
Intense tectonic renovation has occurred in the eastern continent of china since Mesozoic, as evidenced by the high heat flow, widespread magma extrusion and volcanic activities, and development of large sedimentary basins. To explain the cause and mechanism for the tectonic process in this period, some researchers have put forward various models, such as mantle plume, subduction of the Pacific slab, Yangtze Block-North China Block collision, etc. Their seismological evidence, however, is still scarce..During the period from 2000 to 2003, large temporary seismic arrays were established in North China by the Institute of the Geology and Geophysics, Chinese Academy of Sciences. Total 129 portable seismic stations were linearly emplaced across the western and eastern boundaries of the Bohai Bay Basin, and accumulated a large amount of high-quality data. Moreover, abundant data were also collected at the capital digital seismic network established in the ninth five-year period of national economic and social development. These provide an unprecedented opportunity for us to study the deep structure and associated geodynamic mechanism of lithospheric processes in North China using seismological techniques.Seismology is a kind of observation-based science. The development of seismic observations greatly promotes the improvement of seismologic theory and methodology. At the beginning of this thesis, I review the history of seismic observation progress, and present some routine processing techniques used in the array seismology. I also introduce two popular seismic imaging methods (receiver function method and seismic tomography).Receiver function method has been widely used to study the crustal and upper mantle structures, and many relevant research results have been published. In this thesis I elaborate the theory of this method, including the basic concept of receiver functions and the methodology for data pre-processing, stacking and migration. I also address some problems often encountered in practical applications of receiver function imaging.By using the teleseismic data collected at the temporary seismic arrays in North China, in particular, the traveltime information of P-to-S conversion and multiple reverberations of the Moho discontinuity, I obtain the distributions of the crustal thickness and the poisson ratio at the northwest boundary area of the Bohai Bay Basin and discuss the geological implications of the results.Through detailed intestigations on the crustal structural feature around the middle part of the Tanlu fault, considerable disparity in poisson ratios is found in the western and eastern sides of the Tanlu fault. Moreover, an obvious Moho offset is coincidently observed at the same surface location. A reasonable density model for the Tanlu fault area is also derived by simulating the observed gravity variations. Both receiver function study and gravity anomaly modeling suggest that the crustal difference between the western and eastern sides of the Tanlu fault is mainly resulted from their different compositions.With common conversion point imaging of receiver functions, I estimate the depths of the upper and lower boundaries of the mantle transition zone, i.e., the 410 and 660 km discontinuities, beneath most part of the North China continent The thickness of the transition zone (TTZ) in the study area is calculated by subtracting the depth of .410 km discontinuity from that of the 660km discontinuity. The resultant TTZ is 10-15 km larger in the east than in the west of the study area. Phase transitions at the 410 km and the 660 km discontinuities are known to have different Clapeyron slopes. Therefore, the TTZ is sensitive to the temperature changes in the transition zone. Previous studies have shown that the TTZ would be smaller in the mantle plume areas and become larger when the remnants of subducted slabs are present The hypothesis of mantle plume cannot give a reasonable interpretation to the observed TTZ beneath North China, Instead, the receiver function imaging results favor a dynamic model that correlates the thermal structure of the mantle transition zone and associated upper mantle dynamics of North China to the Pacific plate subduction process.
Resumo:
The low-temperature heat capacities of trifluoroacetamide were precisely determined with a small sample precision automated adiabatic calorimeter over the temperature range from 78 to 404 K. A solid-to-solid phase transition, a fusion and a phase transition from a liquid crystalline phase to fully liquid phase have been observed at the temperatures of 336.911+/-0.102, 347.622+/-0.094 and 388.896+/-0.160 K, respectively. The molar enthalpies of these phase transitions as well as the chemical purity of the substance were determined to be 5.576+/-0.004, 11.496+/-0.007, 1.340+/-0.005 kJ mol(-1) and 99.30 mol%, respectively, on the basis of the heat capacity measurements. The molar entropies of the three phase transitions were calculated to be 16.550+/-0.012, 33.071+/-0.029 and 3.447+/-0.027 J mol(-1) K-1, respectively. Further researches of the thermochemical properties for this compound have been carried out by means of TG and DSC techniques. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Molar heat capacities of n-butanol and the azeotropic mixture in the binary system [water (x=0.716) plus n-butanol (x=0.284)] were measured with an adiabatic calorimeter in a temperature range from 78 to 320 K. The functions of the heat capacity with respect to thermodynamic temperature were established for the azeotropic mixture. A glass transition was observed at (111.9 +/- 1.1) K. The phase transitions took place at (179.26 +/- 0.77) and (269.69 +/- 0.14) K corresponding to the solid-liquid phase transitions of. n-butanol and water, respectively. The phase-transition enthalpy and entropy of water were calculated. A thermodynamic function of excess molar heat capacity with respect to temperature was established, which took account of physical mixing, destructions of self-association and cross-association for n-butanol and water, respectively. The thermodynamic functions and the excess thermodynamic ones of the binary systems relative to 298.15 K were derived based on the relationships of the thermodynamic functions and the function of the measured heat capacity and the calculated excess heat capacity with respect to temperature.
Resumo:
Based on the results of the temperature-dependent photoluminescence (PL) measurements, the broad PL emission in the phase-separated GaNP alloys with P compositions of 0.03, 0.07, and 0.15 has investigated. The broad PL peaks at 2.18, 2.12 and 1.83 eV are assigned to be an emission from the optical transitions from several trap levels, possibly the iso-electronic trap levels related to nitrogen. With the increasing P composition (from 0.03 to 0.15), these iso-electronic trap levels are shown to become resonant with the conduction band of the alloy and thus optically inactive, leading to the apparent red shift (80-160meV) of the PL peak energy and the trend of the red shift is strengthened. No PL emission peak is observed from the GaN-rich GaNP region, suggesting that the photogenerated carriers in the GaN-rich GaNP region may recombine with each other via non-radiation transitions.
Resumo:
We analyze low-temperature Raman and photoluminescence spectra of MBE-grown GaN layers on sapphire. Strong and sharp Raman peaks are observed in the low frequency region. These peaks, which are enhanced by excitation in resonance with yellow luminescence transitions, are attributed to electronic transitions related to shallow donor levels in hexagonal GaN. It is proposed that a low frequency Raman peak at 11.7 meV is caused by a pseudo-local vibration mode related to defects involved in yellow luminescence transitions. The dependence of the photoluminescence spectra on temperature gives additional information about the residual impurities in these GaN layers.
Resumo:
Based on the density functional theory, we systematically study the optical and electronic properties of the insulating dense sodium phase (Na-hp4) reported recently (Ma et al., 2009). The structure is found optically anisotropic. Through Bader analysis, we conclude that ionicity exists in the structure and becomes stronger with increasing pressure.
Resumo:
We analyze low-temperature Raman and photoluminescence spectra of MBE-grown GaN layers on sapphire. Strong and sharp Raman peaks are observed in the low frequency region. These peaks, which are enhanced by excitation in resonance with yellow luminescence transitions, are attributed to electronic transitions related to shallow donor levels in hexagonal GaN. It is proposed that a low frequency Raman peak at 11.7 meV is caused by a pseudo-local vibration mode related to defects involved in yellow luminescence transitions. The dependence of the photoluminescence spectra on temperature gives additional information about the residual impurities in these GaN layers.
Resumo:
Based on density functional theory, we systematically studied the electronic and magnetic properties of the real experimental structural phase BiCrO3 with the space group C2/c. It is found that the ground state is a moderately correlated Mott-Hubbard insulator with G-type antiferromagnetic structure, which is in agreement with the experimental observations. The magnetism can be qualitatively understood in terms of the superexchange mechanism via Cr1(t(2g))-O 2p-Cr-2(t(2g)). Moreover, the total energies calculated for various magnetic orderings lead to an estimate of the magnetic interaction constants.