159 resultados para electron cyclotron resonance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

热电子在ECR(Electron Cyclotron Resonance)源中有着非常重要的作用,为了研究ECR源的工作参数(微波功率、磁场等)对热电子的影响,我们对SECRAL(Superconducting ECR ion source with Advanced design in Lanzhou)等离子体在轴向发出的轫致辐射谱进行了系统的测量。从测得的轫致辐射谱中我们得到用来衡量热电子能量的参考量——光谱温度Tspe,并且对ECR源的几个工作参数与Tspe的关系进行了讨论。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

研制了一台体积和重量都较大、设计性能较高的全永磁电子回旋共振(Electron cyclotron resonance, ECR)离子源LAPECR2(Lanzhou all permanent magnetic ECR ion source No.2)。该离子源将用于中国科学院近代物理研究所320 kV高压平台,为其提供强流高电荷态离子束流。LAPECR2的研制采用全新的全永磁磁体结构设计,通过采用高性能的NdFeB永磁材料、优化的磁结构设计以及精确的计算,实测源体的磁场参数能达到高性能ECR离子源的设计要求。离子源采用较高频率的14.5 GHz微波馈入加热等离子体,波导直接馈入离子源以增强馈入微波的稳定性与效率。此外,还大量采用了一些有利于提高离子源高电荷态离子产额的关键技术,如铝内衬等离子体弧腔、负偏压盘、铝制等离子体电极、三电极引出系统、辅助掺气等。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to diagnose the electron cyclotron resonance (ECR) plasma, electron bremsstrahlung spectra were measured by a HPGe detector on Lanzhou ECR Ion Source No. 3 at IMP. The ion source was operated with argon under various working conditions, including different microwave power, mixing gas, extraction high voltage (HV), and so on. Some of the measured spectra are presented in this article. The dependence of energetic electron population on mixing gas and extraction HV is also described. Additionally, we are looking forward to further measurements on SECRAL (Superconducting ECR Ion Source with Advanced design at Lanzhou).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron cyclotron resonance (ECR) ion sources have been used for atomic physics research for a long time. With the development of atomic physics research in the Institute of Modern Physics (IMP), additional high performance experimental facilities are required. A 300 kV high voltage (HV) platform has been under construction since 2003, and an all permanent magnet ECR ion source is supposed to be put on the platform. Lanzhou all permanent magnet ECR ion source No. 2 (LAPECR2) is a latest developed all permanent magnet ECRIS. It is a 900 kg weight and circle divide 650 mm X 562 mm outer dimension (magnetic body) ion source. The injection magnetic field of the source is 1.28 T and the extraction magnetic field is 1.07 T. This source is designed to be running at 14.5 GHz. The high magnetic field inside the plasma chamber enables the source to give good performances at 14.5 GHz. LAPECR2 source is now under commissioning in IMP. In this article, the typical parameters of the source LAPECR2 are listed, and the typical results of the preliminary commissioning are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high charge state all permanent Electron Cyclotron Resonance Ion Source (ECRIS) LAPECR2 (Lanzhou All Permanent magnet ECR ion source No.2) has been successfully put on the 320kV HV platform at IMP and also has been connected with the successive LEBT system. This source is the largest and heaviest all permanent magnet ECRIS in the world. The maximum mirror field is 1.28T (without iron plug) and the effective plasma chamber volume is as large as circle divide 67mm x 255mm. It was designed to be operated at 14.5GHz and aimed to produce medium charge state and high charge state gaseous and also metallic ion beams. The source has already successfully delivered some intense gaseous ion beams to successive experimental terminals. This paper will give a brief overview of the basic features of this permanent magnet ECRIS. Then commissioning results of this source on the platform, the design of the extraction system together with the successive LEBT system will be presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e mu A of Xe37+, 1 e mu A of Xe43+, and 0.16 e mu A of Ne-like Xe44+. To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi31+ beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e mu A of Bi31+, 22 e mu A of Bi41+, and 1.5 e mu A of Bi50+ have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some superconducting magnets research at IMP (Institute of Modern Physics, CAS, Lanzhou) will be described in this paper. Firstly, a superconducting electron cyclotron resonance ion source (SECRAL) was successfully built to produce intense beams of highly charged heavy ions for Heavy Ion Research Facility in Lanzhou (HIRFL). An innovation design of SECRAL is that the three axial solenoid coils are located inside of a sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. Some excellent results of ion beam intensity have been produced and SECRAL has been put into operation to provide highly charged ion beams for HIRFL since May 2007. Secondly, a super-ferric dipole prototype of FAIR Super-FRS is being built by FCG (FAIR China Group) in cooperation with GSI. Its superconducting coils and cryostat is made and tested in the Institute of Plasma Physics (IPP, Hefei), and it more 50 tons laminated yoke was made in IMP. This super-ferric dipole static magnetic field was measured in IMP, it reach to the design requirement, ramping field and other tests will be done in the future. Thirdly, a 3 T superconducting homogenous magnetic field solenoid with a 70 mm warm bore has been developed to calibrate Hall sensor, some testing results is reported. And a penning trap system called LPT (Lanzhou Penning Trap) is now being developed for precise mass measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electron density response of a uniform two-dimensional (2D) electron gas is investigated in the presence of a perpendicular magnetic field and Rashba spin-orbit interaction (SOI). It is found that, within the Hartree-Fock approximation, a charge density excitation mode below the cyclotron resonance frequency shows a mode softening behavior, when the spin-orbit coupling strength falls into a certain interval. This mode softening indicates that the ground state of an interacting uniform 2D electron gas may be driven by the Rashba SOI to undergo a phase transition to a nonuniform charge density wave state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study theoretically the charge-density and spin-density excitations in a two-dimensional electron gas in the presence of a perpendicular magnetic field and a Rashba type spin-orbit coupling. The dispersion and the corresponding intensity of excitations in the vicinity of cyclotron resonance frequency are calculated within the framework of random phase approximation. The dependence of excitation dispersion on various system parameters, i.e., the Rashba spin-orbit interaction strength, the electron density, the Zeeman spin splitting, and the Coulomb interaction strength is investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclotron resonance in CdTe/CdMgTe quantum wells (QWs) was studied. Due to the polaron effect the zero-field effective mass is strongly influenced by the QW width. The experimental data have been described theoretically by taking into account electron-phonon coupling and the nonparabolicity of the conduction band. The subband structure was calculated self-consistently. The best fit was obtained for an electron-phonon coupling constant alpha = 0.3 and bare electron mass of m(b) = 0.092m(0).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetophonon resonance effect in the energy relaxation rate is studied theoretically for a quasi-two-dimensional electron gas in a semiconductor quantum well. An electron-temperature model is adopted to describe the coupled electron-phonon system. The energy relaxation time, derived from the energy relaxation rate, is found to display an oscillatory behavior as the magnetic-field strength changes, and reaches minima when the optical phonon frequency equals integer multiples of the electron cyclotron frequency. The theoretical results are compared with a recent experiment, and a qualitative agreement is found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclotron resonance in CdTe/CdMgTe quantum wells (QWs) was studied. Due to the polaron effect the zero-field effective mass is strongly influenced by the QW width. The experimental data have been described theoretically by taking into account electron-phonon coupling and the nonparabolicity of the conduction band. The subband structure was calculated self-consistently. The best fit was obtained for an electron-phonon coupling constant alpha = 0.3 and bare electron mass of m(b) = 0.092m(0).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During its 1990 operation, 2 large RF systems were available on JET. The Ion Cyclotron Resonance Heating (ICRH) system was equipped with new beryllium screens and with feedback matching systems. Specific impurities generated by ICRH were reduced to negligible levels even in the most stringent H-mode conditions. A maximum power of 22 MW was coupled to L-mode plasmas. High quality H-modes (tau-E greater-than-or-equal-to 2.5 tau-EG) were achieved using dipole phasing. A new high confinement mode was discovered. It combines the properties of the H-mode regime to the low central diffusivities obtained by pellet injection. A value of n(d) tau-E T(i) = 7.8 x 10(20) m-3 s keV was obtained in this mode with T(e) approximately T(i) approximately 11 keV. In the L-mode regime, a regime, a record (140 kW) D-He-3 fusion power was generated with 10 - 14 MW of ICRH at the He-3 cyclotron frequency. Experiments were performed with the prototype launcher of the Lower Hybrid Current Drive (LHCD) systems with coupled power up to 1.6 MW with current drive efficiencies up to < n(e) > R I(CD)/P = 0.4 x 10(20) m-2 A/W. Fast electrons are driven by LHCD to tail temperatures of 100 keV with a hollow radial profile. Paradoxically, LHCD induces central heating particularly in combination with ICRH. Finally we present the first observations of the synergistic acceleration of fast electrons by Transit Time Magnetic Pumping (TTMP) (from ICRH) and Electron Landau Damping (ELD) (from LHCD). The synergism generates TTMP current drive even without phasing the ICRH antennae.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated the transmission probability of a single electron transmission through a quantum ring device based on the single-band effective mass approximation method and transfer matrix theory. The time-dependent Schrodinger equation is applied on a Gaussian wave packet passing through the quantum ring system. The electron tunneling resonance peaks split when the electron transmits through a double quantum ring. The splitting energy increases as the distance between the two quantum rings decreases. We studied the tunneling time through the single electron transmission quantum ring from the temporal evolution of the Gaussian wave packet. The electron probability density is sensitive to the thickness of the barrier between the two quantum rings. (C) 2008 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electron spin resonance (ESR) is optically detected by monitoring the microwave-induced changes in the circular polarization of the neutral exciton (X) and the negatively charged exciton (X-) emission in CdTe quantum wells with low density of excess electrons. We find that the circular polarization of the X and X- emission is a mapping of the spin polarization of excess electrons. By analyzing the ESR-induced decrease in the circular polarization degree of the X emission, we deduce the microwave-induced electron spin-flip time >0.1 mus, which is much longer than the recombination time of X and X-. This demonstrates that the optically detected ESR in type I quantum wells with low density of excess electrons does not obey the prerequisite for the conventional optically detected magnetic resonance. (C) 2001 American Institute of Physics.