66 resultados para driving force


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, a new capping agent, cinnamic acid ( CA) was used to synthesize Au nanoparticles (NPs) under ambient conditions. The size of the NPs can be controlled by adjusting the concentration of reductant ( in our experiment sodium borohydride was used) or CA. The CA-stabilized Au NPs can self-assemble into 'nanowire-like' or 'pearl-necklace-like' nanostructures by adjusting the molar ratio of CA to HAuCl4 or by tuning the pH value of the Au colloidal solution. The process of Au NPs self-assembly was investigated by UV - vis spectroscopy and transmission electron microscopy. The results reveal that the induced dipole - dipole interaction is the driving force of Au NP linear assemblies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fabrication of multilayer microstructures, for example for organic field-effect transistors, using metal transfer printing (MTP) is demonstrated. The Figure shows a two-layer gold structure produced by MTP. Since MTP is a purely additive technique, in which mechanical adhesion acts as the patterning driving force, it is considered an attractive approach to reel-to-reel processing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a straightforward method for patterning thin films of polymers, i.e. a prepatterned mask is used to induce self-assembly of polymers and the resulting pattern is the same as the lateral structures in the mask on a submicrometre length scale, The patterns can be formed at above T-g + 30 degreesC in a short time and the external electric field is not crucial. Electrostatic force is assumed to be the driving force for the pattern transfer. Viscous fingering and novel stress-relief lateral morphology induced under the featureless mask are also observed and the formation mechanisms are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of potassium thiocyanate on the partitioning of lysozyme and BSA in polyethylene glycol 2000/ammonium sulfate aqueous two-phase system has been investigated. As a result of the addition of potassium thiocyanate to the PEG/ammonium sulfate system, the PEG/mixed salts aqueous two-phase system was formed. It was found that the potassium thiocyanate could alter the pH difference between the two phases, and, thus, influence the partition coefficients of the differently charged proteins. The relationship between partition coefficient of the proteins and pH difference between two phases has been discussed. It was proposed that the pH difference between two phases could be employed as the measurement of electrostatic driving force for the partitioning of charged proteins in polyethylene glycol 2000/ammonium sulfate aqueous two-phase system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A blend of polyethersulfone (PES) and polycarbonate (PC) with a ratio of 40/60 was studied by scanning electron microscopy (SEM), dynamic mechanical analysis, and transmission electron microscopy (TEM). It was found that the PES-PC blend is a partially miscible, two-phase system, and an interfacial layer exists between the phases of PES and PC. Specific interaction resulting from the n-complex between PES and PC provides the driving force for formation of the interfacial layer. In addition, phase inversion behavior was also observed for the 40/60 composition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A nanocomposite of nanometer-sized magnetic granular epsilon-FeXN embedded in a nonmagnetic amorphous boron nitride matrix was prepared by ball milling mixture of alpha-Fe and hexagonal boron nitride in argon atmosphere. The grain size of the epsilon-FeXN alloy was about 10-20 nm. The nitrogen concentration in the epsilon-FeXN alloy increases with extending milling time. Both thermodynamic calculation and the present experiment show that iron and nitrogen atoms have higher alloying driving force than iron and boron atoms. Analyses of thermodynamics and kinetics about formation of the epsilon-FeXN alloy suggested that the formation of the epsilon-FeXN alloy is related to amorphization of the hexagonal boron nitride and refinement of the alpha-Fe. II was found from the present experiment that a critical grain size of the alpha-Fe reacting with nitrogen in the amorphous boron nitride is about 8 nm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We studied several inclusion complexes of beta-CD by means of molecular mechanical calculation. The inclusion process and the driving force were discussed, and the conclusion on stability agrees with the results of electrochemical experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CORROSION; WATER; SPECTROSCOPY; CHLORIDE; ZINC; NUCLEATION; INTERFACE; ELECTRODE; SURFACES; GROWTH

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2(1972) 225; J. Geophys. REs. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A coupled numerical model with a 2' x 2' resolution grid has been developed and used to simulate five typical typhoon storm surges (5612, 7413, 7910, 8114, and 9711) in the East Sea of China. Three main driving forces have been considered in this coupled model: wave radiation stress, combined wave-current bottom shear stress and wave-state-dependent surface wind stress. This model has then been compared with in situ measurements of the storm set-up. The effect of different driving force components on the total storm surge has also been investigated. This study has found that the coupled model with high resolution is capable of simulating the five typical typhoons better than the uncoupled models, and that the wave-dependent surface wind stress plays an important role in typhoon storm surge-wave coupling in this area and can increase the storm set-up by 1 m. The study of the five typhoon cases has shown that the general coupling effects could increase storm set-up by 20-32%. Thus, it is suggested that to predict typhoon storm surges in the East Sea of China, a storm surge-wave coupled model be adopted. (C) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glass eels of the temperate anguillid species, Anguilla japonica, clearly showed a nocturnal activity rhythm under laboratory conditions. Light-dark cycle was a determinant factor affecting their photonegative behavior, nocturnal locomotor activity, and feeding behavior. Under natural light conditions, glass eels remained in shelters with little daytime feeding, but came out to forage during darkness. They moved and foraged actively in the following dark, and then their activity gradually declined possibly because of food satiation. They finally buried in the sand or stayed in tubes immediately after the lights came on. Under constant light, glass eels often came out of the shelters to forage in the lights but spent little time moving outside the shelters (e.g. swimming or crawling on the sand). Glass eels took shelter to avoid light and preferred tubes to sand for shelter possibly because tubes were much easier for them to take refuge in than sand. Feeding and locomotor activities of the glass eels were nocturnal and well synchronized. They appeared to depend on olfaction rather than vision to detect and capture prey in darkness. Feeding was the driving force for glass eels to come out of sand under constant light. However, in the dark, some glass eels swam or crept actively on sand even when they were fully fed. The lunar cycles of activity rhythms of glass eels that have been observed in some estuarine areas were not detected under these laboratory conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

After systemic investigation of the techniques,route lines and mechanisms about the remaining oil,the dynamic migration and congregation behavior of the remaining oil are discussed on base of interaction between flowing and enriching of water and oil.After the micro-scope modeling of the fluid flow in porous media and the changes in petrol-physical properties of the flowing system, the characters of fluid fields and the dynamic distribution of oil are discussed, among which the preference-flowing is focused on. Based on the preference-flowing in porous media, the concept of the preference-flowing channels is developed. According to above, heterogeneous distribution of water and oil in the field and dynamic mechanism of remaining oil are all obvious. media can be divided into three kinds, directional, stochastic, arbitrary porous media. The main research results are as following: 1. Treating the characteristic parameters such as permeability, porosity and wettability as regional parameter, the fluid field with high water-cut has been established by geostatistical method, among which the difference of flowing pores and the changes of its petrol-physical properties during flooding are studied. 2. The flow process of water and oil are recurrent in physical simulation experiments, in which the mechanisms and phenomena are caught and analyzed. Fluid flow mechanics in porous media with preference-flowing channels have been studied. 3. The mutual coupling between water and oil is induced and the mathematical evolution equations including this interaction were built. . 4. Through coupling effect between flowing water and oil, the dynamic migration and congregation behavior of remaining oil depend upon this coupling. 5. Coupling between water and oil act as driving force and trapping force for the remaining oil. The coupling model of thesis has been verified by simplified the numerical model and compared results with Ng35 oil reservoir in Gudao oil field, it has important theoretical and application values for improving precision of remaining oil and production performance prediction, and is a new method for studying the mechanics of remaining oil in channeled porous media has been established. Key words:flow field,high water-cut,coupling,dominant flow in porous media,remaining oil

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Baijiahai uplift is an important hydrocarbon accumulation belt in eastern Jungger Basin, on which Cainan oilfield and lithologic hydrocarbon reservoir named Cai 43 have been discovered and both of them share the same target formation of Jurassic. However, in the subsequent exploration at this region, several wells that designed for lithologic traps of Jurassic were eventually failed, and that indicates the controlling factors of lithologic reservoir distribution are far more complicated than our previous expectation. This dissertation set the strata of the Jurassic in well Cai 43 region as the target, and based on the integrated analysis of structure evolution、fault sealing ability、simulations of sedimentary microfacies and reservoir beds、distribution analysis of high porosity-high permeability carrier beds、drive forces of hydrocarbons、preferential conduit system and conduit model as well as critical values of the reservoir physical properties for hydrocarbon charging, a special method that different from the conventional way to predict favorable lithologic traps was established. And with this method the controlling factors of the hydrocarbon reservoirs formation are figured out, and further more, the favorable exploration targets are point out. At Baijiahai uplift, fault plays as a crucial factor in the process of the hydrocarbon reservoir formation. In this study, it is found out that the availability of a fault that work as the seal for oil and gas are different. The critical value of the lateral mudstone smear factor (Kssf), which is used to measure the lateral sealing ability of fault, for oil is 3.9 while that for gas is 2.1; and the critical value of vertical sealing factor (F), which similarly a measurement for the vertical sealing ability of fault, for oil is 7.3 while that for gas is 5.1. Dongdaohaizi fault belt that possessed well lateral sealing ability since later Cretaceous have bad vertical sealing ability in later Cretaceous, however, it turns to be well now. Based on the comparison of the physical properties that respectively obtained from electronic log calculating、conventional laboratory rock analysis and the additive-pressure bearing laboratory rock analysis, we established the functions through which the porosity and permeability obtained though conventional method can be converted to the values of the subsurface conditions. With this method, the porosity and permeability of the Jurassic strata at the time of previous Tertiary and that in nowadays are reconstructed respectively, and then the characteristics of the distribution of high porosity-high permeability carrier beds in the evolution processes are determined. With the result of these works, it is found that both well Cai 43 region and Cainan oilfield are located on the preferential conduit direction of hydrocarbon migration. This conclusion is consistent with the result of the fluid potential analysis, in which fluid potential of nowadays and that of later Cretaceous are considered. At the same times, experiment of hydrocarbon injection into the addictive-pressure bearing rock is designed and conducted, from which it is found that, for mid-permeability cores of Jurassic, 0.03MPa is the threshold values for the hydrocarbon charging. And here, the conception of lateral pressure gradient is proposed to describe the lateral driving force for hydrocarbon migration. With this conception, it is found that hydrocarbons largely distributed in the areas where lateral pressure gradient is greater than 0. 03MPa/100m. Analysis of critical physical properties indicated that the value of the critical porosity and critical permeability varied with burial depth, and it is the throat radius of a certain reservoir bed that works as a key factor in controlling hydrocarbon content. Three parameters are proposed to describe the critical physical properties in this dissertation, which composite of effective oil-bearing porosity、effective oil-bearing permeability and preferential flow coefficient. And found that critical physical properties, at least to some extent, control the hydrocarbon distribution of Jurassic in Baijiahai uplift. Synthesize the content discussed above, this dissertation analyzed the key factors i.e., critical physical properties、driving force、conduit system and fluid potential, which controlled the formation of the lithologic reservoir in Baijiahai uplift. In all of which conduit system and fluid potential determined the direction of hydrocarbon migration, and substantially they are critical physical properties of reservoir bed and the lateral pressure gradient that controlled the eventually hydrocarbon distribution. At the same times, sand bodies in the major target formation that are recognized by reservoir bed simulation are appraised, then predict favorite direction of the next step exploration of lithologic reservoir.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the past decade density functional theory (DFT) has made its way from a peripheral position in quantum chemistry to center. Of course the often excellent accuracy of the DFT based methods has provided the primary driving force of this development. This dissertation is devoted to the study of physical and chemical properties of planetary materials by first-principle calculation. The concerned properties include the geometry, elastic constants and anisotropy. In the first chapter, we give a systematic introduction to theoretical background and review its progress. Development of quantum chemistry promotes the establishment of DFT. Theorem of Hohenberg-Kohn is the fundament of DFT and is developed to Kohn-Sham equation, which can be used to perform real calculations. Now, new corrections and extensions, together with developed exchange-correlation, have made DFT more accurate and suitable for larger systems. In the second chapter, we focus on the calculational methods and technical aspects of DFT. Although it is important to develop methods and program, external package are still often used. At the end of this chapter, we briefly some widely used simulation package and the application of DFT. In the third chapter, we begin to focus on properties of real materials by first principles calculation. We study a kind of minerals named Ca perovskite, investigate its possible structure and anisotropy at Earth’s mental condition. By understanding and predicting geo-physically important materials properties at extreme conditions, we can get the most accurate information to interpret seismic data in the context of likely geophysical processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

That the dodecahedral water cluster (DWC) can adsorb dissolved methane molecules, an important phenomenon related to the hydrate nucleation study, has been observed through molecular dynamics simulations, but it has not been explained satisfactorily [Guang-Jun Guo; Yi-Gang Zhang; Hua Liu. J. Phys. Chem. C, 2007, 111, 2595]. In order to explain this phenomenon by using the potential of mean force (PMF) between the DWC and the dissolved methane, we perform several series of constrained molecular dynamics simulations in the methane-water system. The distance between the center of DWC and the methane molecule is constrained from 5 Å to 18 Å by adding 0.2 Å every time. For each fixed distance, we perform 20 independent simulations to improve the statistical precision. We first get the constraint force between the DWC and the dissolved methane in each simulation and then calculate the PMF by integrating these forces. Subsequently, the radial distribution function (RDF) is obtained from the PMF through an equation of statistical mechanics. The results show that the RDF has a sharp peak at about 6.2 Å, successfully explaining why the DWC adsorbs dissolved methane molecules. The preferential binding coefficient is a positive value (=2.05±0.5), indicates that the DWC tends to adsorb dissolved methane rather than water molecules in methane aqueous solutions. The curve of PMF for the DWC encaging a methane almost coincides that for the empty DWC, meaning that it is the DWC rather than the encaged methane who could adsorb dissolved methane molecules. By comparing the curves of PMF for different directions of the DWC relative to the dissolved methane, we find that it is the cage face rather than the cage edge or vertex that plays an essential role when the DWC adsorbing dissolved methane. This research sheds light on the driving force for the methane adsorption, and it is helpful in understanding the nucleation process of methane hydrate.