190 resultados para coupling efficiency
Resumo:
In this paper, we reported on the fabrication of 980 nm InGaAs/InGaAsP strained quantum-well (QW) lasers with broad waveguide. The laser structure was grown by low-pressure metalorganic chemical vapor deposition on a n(+)- GaAs substrate. For 3 mu m stripe ridge waveguide lasers, the threshold current is 30 mA and the maximum output power and the output power operating in fundamental mode are 350 mW and 200 mW, respectively. The output power from the single mode fiber is up to 100 mW, the coupling efficiency is 50%. We also fabricated 100 mu m broad stripe coated lasers with cavity length of 800 mu m, a threshold current density of 170 A/cm(2), a high slope efficiency of 1.03 W/A and a far-field pattern of 40 x 6 degrees are obtained. The maximum output power of 3.5 W is also obtained for 100 mu m wide coated lasers. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We present an efficient photorefractive volume hologram recording technique with a pulsed signal beam and continuous reference-beam illumination. The grating envelope can be simply controlled by manipulation of the duty cycle of the signal beam. Thus, for any grating coupling strength and different initial reference-signal intensity ratios, the diffraction efficiency can be maximized with this technique and can be greatly increased in comparison with that of the conventional recording technique. (C) 1998 Optical Society of America.
Resumo:
A five-level tripod scheme is proposed for obtaining a high efficiency four-wave-mixing (FWM) process. The existence of double-dark resonances leads to a strong modification of the absorption and dispersion properties against a pump wave at two transparency windows. We show that both of them can be used to open the four-wave mixing channel and produce efficient mixing waves. In particular, higher FWM efficiency is always produced at the transparent window corresponding to the relatively weak-coupling field. By manipulating the intensity of the two coupling fields, the conversion efficiency of FWM can be controlled.
Resumo:
By using quite uniformly nine-stacks side-around arranged compact pumping system, a high power Nd:YAG ceramic quasi-CW laser with high slope efficiency of 62% has been demonstrated. With 450 W quasi-CW stacked laser diode bars pumping at 808 nm, performance of the Nd: YAG ceramic laser with different output coupling mirrors has been investigated. Optimum output power of 236 W at 1064 nm was obtained and corresponding optical-to-optical conversion efficiency was as high as 52.5%. The laser system operated quite stably and no saturation phenomena have been observed, which means higher output laser power could be obtained if injecting higher pumping power. The still-evolving Nd: YAG ceramics are potential super excellent media for high power practical laser applications. (c) 2005 Optical Society of America.
Resumo:
The photoluminescence (PL) intensity enhancement and suppression mechanism on surface plasmons (SPs) coupling with InGaN/GaN quantum wells (QWs) have been systematically studied. The SP-QW coupling behaviors in the areas of GaN cap layer coated with silver thin film were compared at different temperatures and excitation powers. It is found that the internal quantum efficiency (IQE) of the light emitting diodes (LEDs) varies with temperature and excitation power, which in turn results in anomalous emission enhancement and suppression tendency related to SP-QW coupling. The observation is explained by the balance between the extraction efficiency of SPs and the IQE of LEDs
Resumo:
Optical refrigeration of semiconductors is encountering efficiency difficulties caused by nonradiative recombination and luminescence trapping. A commonly used approach for enhancing luminescence efficiency of a semiconductor device is coupling a lens with the device. We quantitatively study the effects of a coupling lens on optical refrigeration based on rate equations and photon recycling, and calculated cooling efficiencies of different coupling mechanisms and of different lens materials. A GaAs/GaInP heterostructure coupled with a homo-epitaxial GaInP hemispherical lens is recommended.
Resumo:
We have studied the optical matching layers (OMLs) and external quantum efficiency in the evanescent coupling photodiodes (ECPDs) integrating a diluted waveguide as a fibre-to-waveguide coupler, by using the semi-vectorial beam propagation method (BPM). The physical basis of OML has been identified, thereby a general designing rule of OML is developed in such a kind of photodiode. In addition, the external quantum efficiency and the polarization sensitivity versus the absorption and coupling length are analysed. With an optical matching layer, the absorption medium with a length of 30 mu m could absorb 90% of the incident light at 1.55 mu m wavelength, thus the total absorption increases more than 7 times over that of the photodiode without any optical matching layer.
Resumo:
Mode coupling between the whispering-gallery modes (WGMs) is numerically investigated for a two-dimensional microdisk resonator with an output waveguide. The equilateral-polygonal shaped mode patterns can be constructed by mode coupling in the microdisk, and the coupled modes can still keep high quality factors (Q factors). For a microdisk with a diameter of 4.5 mu m and a refractive index of 3.2 connected to a 0.6-mu m-wide output waveguide, the coupled mode at the wavelength of 1490 nm has a Q factor in the order of 10(4), which is ten times larger than those of the uncoupled WGMs, and the output efficiency defined as the ratio of the energy flux confined in the output waveguide to the total radiation energy flux is about 0.65. The mode coupling can be used to realize high efficiency directional-emission microdisk lasers. (C) 2009 Optical Society of America
Resumo:
We propose a novel optical fiber-to-waveguide coupler for integrated optical circuits. The proper materials and structural parameters of the coupler, which is based on a slot waveguide, are carefully analyzed using a full-vectorial three dimensional mode solver. Because the effective refractive index of the mode in a silicon-on-insulator-based slot waveguide can be extremely close to that of the fiber, a highly efficient fiber-to-waveguide coupling application can be realized. For a TE-like mode, the calculated minimum mismatch loss is about 1.8dB at 1550nm, and the mode conversion loss can be less than 0.5dB. The discussion of the present state-of-the-art is also involved. The proposed coupler can be used in chip-to-chip communication.
Resumo:
A 7.8-mu m surface emitting second-order distributed feedback quantum cascade laser (DFB QCL) structure with metallized surface grating is studied. The modal property of this structure is described by utilizing coupled-mode theory where the coupling coefficients are derived from exact Floquet-Bloch solutions of infinite periodic structure. Based on this theory, the influence of waveguide structure and grating topography as well as device length on the laser performance is numerically investigated. The optimized surface emitting second-order DFB QCL structure design exhibits a high surface outcoupling efficiency of 22% and a low threshold gain of 10 cm(-1). Using a pi phase-shift in the centre of the grating, a high-quality single-lobe far-field radiation pattern is obtained.
Resumo:
A liquid laser medium with a lifetime of 492 mu s and a fluorescent quantum efficiency of 52.5% has been presented by stably dispersing dimethyl dichorosilane-modified Nd2O3 nanoparticles in dimethylsulfoxide. Its optical properties and mechanism were investigated and explained by fluorescence resonance energy transfer theory. The calculation result shows that the quenching of Nd-III F-4(3/2)-> I-4(11/2) transition via O-H vibrational excitation can be eventually neglected. The main reason is that the silane-coupling agent molecules remove the -OH groups on Nd2O3 nanoparticles and form a protective out layer. (c) 2007 American Institute of Physics.
Resumo:
In this paper, we report for the first time on the synthesis of ZnO nanocrystallites in conjugated polymer (PPV) nanofibers by the coupling of the in situ/blend methods and electrospinning. These composite nanofibers were characterized by fluorescence microscopy, atomic force microscope (AFM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra, Fourier transform infrared (FT-IR) spectroscopy, and X-ray powder diffraction (XRD).
Resumo:
Investigation of a heterogeneous electron-transfer (ET) reaction at the water/1,2-dichloroethane interface employing a double-barrel micropipet technique is reported. The chosen system was the reaction between Fe(CN)(6)(3-) in the aqueous phase (W) and ferrocene in 1,2-dichloroethane (DCE). According to the generation and the collection currents as well as collection efficiency, the ET-ion-transfer (IT) coupling process at such an interface and competing reactions with the organic supporting electrolyte in the organic phase can be studied. In addition, this technique has been found to be an efficient method to distinguish and measure the charge-transfer coupling reaction between two ions (IT-IT) processes occurring simultaneously at a liquid/liquid interface. On this basis, the formal Gibbs energies of transfer of some ions across the W/DCE interface, such as NO3-, NO2-, Cl-, COO-, TBA(+), IPAs+, Cs+, Rb+, K+, Na+, and Li+, for which their direct transfers are usually difficult to obtain because of the IT-IT coupling processes, were quantitatively evaluated.
Resumo:
The C-phycocyanin and the R-phycoerythrin were purified from the blue-green alga Spirulina platensis and red alga Polysiphonia urceolata respectively. Both sodium periodate and glutaraldehyde are effective coupling agents being capable of constructing the R-phycoerythrin-C-phycocyanin conjugate, which was also called phycobiliproteins energy transfer model. The two artificial conjugates constructed with different methods were purified by Sephadex G-200 chromatography respectively. Spectra analysis indicated that energy transfer occurred in the two conjugates. The conjugate with sodium periodate had the higher efficiency of energy transfer than that with glutaraldehyde conjugate.
Resumo:
High-throughput screening of HZSM-5 supported metal-oxides catalysts were carried out for the coupling reaction of methane with CO to aromatics in a multi-stream reactor system. Zn/HZSM-5 and Mo/HZSM-5 were observed to be rather effective for the catalytic formation of aromatics from the coupling reaction of methane with CO. Temperature-programmed reaction has further proven the efficiency of the coupling of methane and CO over Zn/HZSM-5 catalyst. The results were also validated in a conventional fixed-bed reactor coupled with GC. The results propose that the coupling methane with CO toward benzene and naphthalene can be catalyzed by Zn/HZSM-5 at 500 ° C. Both methane and CO are needed for the formation of reactive coke on the catalyst, and the reactive coke may be the initial product in the producing of hydrocarbons. © 2005 Elsevier B.V. All rights reserved.