100 resultados para cosmic microwave background
Resumo:
IEECAS SKLLQG
Resumo:
In the construction of a large area neutron detector (neutron wall) that is used to detect neutrons at GeV energies, the performances of all the sampling paddle modules prepared for the neutron wall are investigated with a specially designed test bench. Tested by cosmic rays, an average intrinsic time resolution of 222.5 ps is achieved at the center of the modules. The light attenuation length and the effective speed of the light in the module are also investigated.
Resumo:
A high quality pure hydroxy-sodalite zeolite membrane was successfully synthesized on an alpha-Al2O3 support by a novel microwave-assisted hydrothermal synthesis (MARS) method. Influence of synthesis conditions, such as synthesis time, synthesis procedure, etc., on the formation of hydroxy-sodalite zeolite membrane by MAHS method was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and gas permeation measurements. The synthesis of hydroxy-sodalite zeolite membrane by MAHS method only needed 45 min and synthesis was more than 8 times faster than by the conventional hydrothermal synthesis (CHS) method. A pure hydroxy-sodalite zeolite membrane was easily synthesized by MAHS method, while a zeolite membrane, which consisted of NaX zeolite, NaA zeolite and hydroxy-sodalite zeolite, was usually synthesized by CHS method. The effect of preparation procedures had a dramatic impact on the formation of hydroxy-sodalite zeolite membrane and a single-stage synthesis procedure produced a pure hydroxy-sodalite zeolite membrane. The pure hydroxy-sodalite zeolite membrane synthesized by MARS method was found to be well inter-grown and the thickness of the membrane was 6-7 mum. Gas permeation results showed that the hydrogen/n-butane permselectivity of the hydroxy-sodalite zeolite membrane was larger than 1000. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Experimental data are presented to show the influence of a very small amount of inorganic salt on the demulsification of water-in-oil emulsions. It was found that some inorganic salts could effectively enhance the demulsification efficiency and increase the light transmittance of the water separated from the emulsions. The demulsification efficiency may reach 100% in a very short time under microwave radiation.
Resumo:
The environmentally friendly removal of NO has been investigated using continuous microwave discharge (CMD) at atmospheric pressure. In these experiments, conversions of NO to N-2 as well as NO2 were mainly observed for both dry and wet feed gas, which showed a great difference from those observed with other discharge methods. The effects of a series of reaction parameters, including microwave input power, O-2 concentration, NO concentration, and gas flow rate, on the product distribution and energy efficiency were also studied. Under all reaction conditions, the conversions of NO to N-2 were higher than those to NO2. The highest conversion of NO to N-2 was 88%. The reaction rate of NO removal and the effects of the different discharge modes on NO conversion and product distribution are also discussed. Through comparison of the results of different discharge modes, it was found that the addition of CH4 apparently increased the conversion of NO to N-2 as well as the energy efficiency. A possible reaction process is suggested.
Resumo:
The reduction of NO by CH4 in the presence of excess O-2 over Co/HZSM-5, Ni/HZSM-5 and Mn/HZSM-5 catalysts with microwave heating was studied. By comparing the activities of the catalysts in the microwave heating mode with that in the conventional reaction mode, it was demonstrated that microwave heating could greatly reduce the reaction temperature, and could clearly expand the temperature window of the catalysts. Especially for the Co/HZSM-5 catalyst, the maximum conversion of NO to N-2 in the conventional reaction mode was consistent with that in the microwave heating mode. However, the temperature window for the maximum conversion in the microwave heating mode was from 260 to 360degreesC instead of a temperature of 420degreesC in the conventional reaction mode. The results suggest that microwave heating has a novel effect in the reduction of NO.