86 resultados para citrate potassium
Resumo:
The transformation of olefin to aromatics over ZSM-5 catalysts with different K-loadings has been investigated both in a continuous flow fixed-bed reactor and in a pulse microreactor. Investigation of variation of olefin aromatization activity with K-loadings shows that strong acid sites are indispensable for the converting of olefin to aromatics. As intermediates of olefin aromatization process, butadiene and cyclopentene not only show much higher aromatization activity than mono-olefins, but also can be transformed into aromatics over relatively weak acid sites of K/ZSM-5. A proposal is put forward, stating that among all the steps experienced in olefins aromatization, the formation of diene or cycloolfin from mono-olefins through hydrogen transfer is the key step and can be catalyzed by strong acid sites.
Resumo:
The electrolytic deposition and diffusion of lithium onto bulk magnesium-9 wt pct yttrium alloy cathode in molten salt of 47 wt pct lithium chloride and 53 wt pct potassium chloride at 693 K were investigated. Results show that magnesium-yttrium-lithium ternary alloys are formed on the surface of the cathodes, and a penetration depth of 642 mu m is acquired after 2 hours of electrolysis at the cathodic current density of 0.06 A center dot cm(-2). The diffusion of lithium results in a great amount of precipitates in the lithium containing layer. These precipitates are the compound of Mg41Y5, which arrange along the grain boundaries and hinder the diffusion of lithium, and solid solution of yttrium in magnesium. The grain boundaries and the twins of the magnesium-9 wt pct yttrium substrate also have negative effects on the diffusion of lithium.
Resumo:
A cation-driven allosteric G-quadruplex DNAzyme (PW17) was utilized to devise a conceptually new class of DNA logic gate based on cation-tuned ligand binding and release. K+ favors the binding of hemin to parallel-stranded PW17, thereby promoting the DNAzyme activity, whereas Pb2+ induces PW17 to undergo a parallel-to-antiparallel conformation transition and thus drives hemin to release from the G-quadruplex, deactivating the DNAzyme. Such a K+-Pb2+ switched G-quadruplex, in fact, functions as a two-input INHIBIT logic gate. With the introduction of another input EDTA, this G-quadruplex can be further utilized to construct a reversibly operated IMPLICATION gate.
G-Quadruplex-based DNAzyme as a sensing platform for ultrasensitive colorimetric potassium detection
Resumo:
In this work, we studied the reaction between Au nanoparticles (Au NPs) and [Fe(CN)(6)](3-) by the UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy. The absorption peak of Au NPs disappeared after adding [Fe(CN)(6)](3-) and the XPS data conformed the formation of [Au(CN)(2)](-). The results demonstrated that [Fe(CN)(6)](3-) could induce the dissolution of Au NPs, where the CN- from the dissociation of [Fe(CN)(6)](3-) played an important role.
Resumo:
Doubly charged cluster ions, besides singly charged cluster ions, from sodium and potassium nitrates were produced evidently under normal source capillary temperature of 200 degrees C in both positive and negative ion electrospray ionization (ESI) ion trap mass spectrometry. The fragmentation pathways for doubly charged cluster ions were studied in detail using ESI tandem mass spectrometry and two pathways were observed depending on the cluster sizes of alkali metal nitrates. In addition, factors that affect the formation of cluster ions were also interrogated.
Resumo:
One inorganic-organic hybrid and two host-guest complexes were synthesized from calix[4] arene tetra acetic ether derivative( C60H80O12, L) and potassium polyoxometalates. The structures of the complexes were characterized with the elemental analysis, IR, TG-DTA and X-crystallographic. X-ray crystallographic studies reveal the formation of an ionic crystal, which contains a calix-cluster and calix-cluster-calix line array, and belongs to a typical inorganic-organic hybrid ( complex 1) or has a host-guest structure ( complex 2 and 3). The results of cyclic voltammograms at different scanning rates showed that the anode peak current of complex 1 was proportional to the square root of the scanning rate and the charge transfer process was controlled by pervasion. The anode peak current of complexes 2 and 3 was proportional to the scanning rate and the charge transfer process was controlled by the surface. The results suggest that there are consanguineous relationship between the anode reaction and the structure.
Resumo:
By using inorganic salts as raw materials and citric acid as complexing agent, alpha-Zn-3(PO4)(2) and Eu3+ doped alpha-Zn-3(PO4)(2) phosphor powders were prepared by a citrate-gel process. X-ray diffraction, (XRD), TG - DTA, FT - IR and luminescence excitation and emission spectra were used to characterize the resulting products. The results of XRD reveal that the powders begin to crystallize at 500 degreesC and pure alpha-Zn-3(PO4)(2) phase is obtained at 800 degreesC. And the results of XRD reveal that Eu3+ exists Lis EoPO(4) ill the powder. In the phosphor powders, the Eu3+ shows its characteristic red-orange (592 nm, D-5(0) - F-7(1)) emission and has no quenching concentration.
Resumo:
We report an easy synthesis of highly branched gold particles through a seed-mediated growth approach in the presence of citrate. The addition of citrate in the growth solution is found to be crucial for the formation of these branched gold particles. Their size can be varied from 47 to 185 nm. The length of the thumb-like branch is estimated to be between about 5 and 20 nm, and changes slightly as the particle size increases. Owing to these obtuse and short branches, their surface plasmon resonance displays a marked red-shift with respect to the normal spherical particles. These branched gold particles exhibit stronger SERS activity than the non-branched ones, which is most likely related to these unique branching features.
Resumo:
A facile molten salt synthesis route was developed to prepare ZnTiO3 ceramic powders with simple oxides ZnO and TiO2 using sodium and potassium chloride eutectic salts as flux. The role of calcination temperature and time and the amount of salt addition to ZnTiO3 formation was investigated by thermogravimetry-differential thermal analysis, X-ray diffraction and Fourier transformation-infrared spectroscopy measurements. Pure hexagonal phase of ZnTiO3 could be obtained from the mixture of the simple oxides and the chlorides (50 mol% KCl, 20 times to oxides in molar ratio) heating at 800 degrees C for 6 h. The scanning electron microscopy images revealed the products were hexagonal sheets of about 1-3 mu m size. Increasing the amount of salt aids in reducing the crystal sizes of final ceramic powders because of diluting the solution.
Resumo:
A novel phosphor Sr2CeO4 was synthesized by the citrate-gel method. The results of XRD show that the temperature at which the crystallization starting is lowered and the soak time for complete crystallization is decreased. The values of pH of the precursor and the ratio( R) between the citrate and cation ions have an effect on the crystallization process. The host can transfer its exciting energy to rare earth ion Eu3+. The doped compound emits strong white light when the concentration of the doped Eu3+ is low. When that of Eu3+ is increased, it emits strong red light. The fluorescence from the higher excited states can be observed because the multiphonon relaxation probability between Eu3+ ions is low.
Resumo:
A nitrate-citrate combustion route to synthesize nanocrystalline samarium-doped ceria powders for solid electrolyte ceramics is presented. This route is based on the gelling of nitrate solutions by the addition of citric acid and ammonium hydroxide, followed by an intense combustion process due to an exothermic redox reaction between nitrate and citrate ions. The influence of ignition temperature on the characteristics of the powders was studied. The change of the crystal structure with the content of doped Sm was investigated. High temperature X-ray, and Raman scattering were used to characterize the sample. The lattice constant and unit volume increase with doping level and increasing temperature. Dense ceramic samples prepared by uniaxial pressing and sintering in air were also studied.
Resumo:
By using inorganic salts as raw materials and citric acid as complexing agent, spinel oxide ZnGa2O4 and Mn2+, Eu3+-doped ZnGa2O4 phosphor powders were prepared by a citrate-gel process. X-ray diffraction (XRD), TG-DTA, FT-IR. and luminescence excitation and emission spectra were used to characterize the resulting products. The results of XRD reveal that the powders begin to crystallize at 500 degreesC and pure ZnGa2O4 phase is obtained at 700 degreesC, which agrees well with the results of TG-DTA and FT-IR. In the crystalline ZnGa2O4, the Eu shows its characteristic red (615 nm, D-5(0)-F-7(2)) emission with a quenching concentration of 5 mol% (of Ga3+), and the Mn shows green emission (505 nm, T, A,) with a quenching concentration of 0.1 mol% (of Zn2+). The luminescence mechanism of ZnGa2O4:Mn2+/Eu3+ is presented.
Resumo:
The transfer of sodium and potassium ions facilitated by dibenzo-15-crown-5 (DB15C5) has been studied at the micro-water/1,2-dichloroethane (water/DCE) interface supported at the tip of a micropipette. Cyclic volt-ammetric measurements were performed in two limiting conditions: the bulk concentration of Na+ or K+ in the aqueous phase is much higher than that of DB15C5 in the organic phase (DB15C5 diffusion controlled process) and the reverse condition (metal ion diffusion controlled process). The mechanisms of the facilitated Na+ transfer by DB15C5 are both transfer by interfacial complexation (TIC) with 1 : 1 stoichiometry under these two conditions, and the corresponding association constants were determined at log beta(1) = 8.97 +/- 0.05 or log beta(1) = 8.63 +/- 0.03. However, the transfers of K+ facilitated by DB15C5 show different behavior. In the former case it is a TIC process and its stoichiometry is 1 : 2, whereas in the latter case two peaks during the forward scan were observed, the first of which was confirmed as the formation of K (DB15C5)(2) at the interface by a TIC mechanism, while the second one may be another TIC process with 1 : 1 stoichiometry in the more positive potential. The relevant association constants calculated for the complexed ion, K+(DB15C5)(2), in the organic phase in two cases, logbeta(2), are 13.64 +/- 0.03 and 11.34 +/- 0.24, respectively.
Resumo:
A study of potassium ion transfer across a water \ 1,2-dichloroethane (W \ DCE) interface facilitated by dibenzo-18-crown-6 (DB18C6) with various phase volume ratio systems is presented. The key point was that a droplet of aqueous solution containing a redox couple, Fe(CN)(6)(3-)/Fe(CN)(6)(4-), with equal molar ratio, was first attached to a platinum electrode surface, and the resulting droplet electrode was then immersed into the organic solution containing a hydrophobic electrolyte to construct a platinum electrode/aqueous phase/organic phase system. The interfacial potential of the W \ DCE within the series could be externally controlled because the specific compositions in the aqueous droplet make the Pt electrode function like a reference electrode as long as the concentration ratio of Fe(CN)(6)(3-)/Fe(CN)(6)(4-) remains constant. In this way, a conventional three-electrode potentiostat can be used to study the ion transfer process at a liquid \ liquid (L \ L) interface facilitated by an ionophore with variable phase volume ratio (r = V-o/V-w). The effect of r on ion transfer and facilitated ion transfer was studied in detail experimentally. We also demonstrated that as low as 5 x 10(-8) M DB18C6 could be determined using this method due to the effect of the high phase volume ratio.