68 resultados para Variational techniques
Resumo:
The paper studies the direct oxidation of ethanol and CO on PdO/Ce0.75Zr0.25O2 and Ce(0.75)Zr(0.2)5O(2) catalysts. Characterization of catalysts is carried out by temperature-programmed desorption (TPD), temperature-programmed surface reaction (TPSR) techniques to correlate with catalytic properties and the effect of supports on PdO. The simple Ce0.75Zr0.25O2 is in less active for ethanol and CO oxidation. After loaded with PdO, the catalytic activity enhances effectively. Combined the ethanol and CO oxidation activity with CO-TPD and ethanol-TPSR profiles, we can find the more intensive of CO2 desorption peaks, the higher it is for the oxidation of CO and ethanol. Conversion versus yield plot shows the acetaldehyde is the primary product, the secondary products are acetic acid, ethyl acetate and ethylene, and the final product is CO2. A simplified reaction scheme (not surface mechanism) is suggested that ethanol is first oxidized to form intermediate of acetaldehyde, then acetic acid, ethyl acetate and ethylene formed going with the formation of acetaldehyde, acetic acid, ethyl acetate; finally these byproducts are further oxidized to produce CO2. PdO/Ce0.75Zr0.25O2 catalyst has much higher catalytic activity not only for the oxidation of ethanol but also for CO oxidation. Thus the CO poison effect on PdO/Ce0.75Zr0.25O2 catalysts can be decreased and they have the feasibility for application in direct alcohol fuel cell (DAFC) with high efficiency.
Resumo:
A methodological survey of microsphere formation and microencapsulation techniques based on solvent extraction/evaporation techniques is presented. Thus, basic features of solvent extraction and solvent evaporation processes, including droplet formation, droplet/particle stabilization, and solvent removal, are outlined. Preparation of a wide range of microspherical and microcapsular products based on biodegradable polyesters, polysaccharides, and nonbiodegradable polymers are discussed. Dependence of microcapsule characteristics on manufacturing parameters, as well as performance evaluation of microspherical and microcapsular products, are also briefly covered.
Resumo:
A general procedure to determine the absolute configuration of cyclic secondary amines with Mosher's NMR method is demonstrated, with assignment of absolute configuration of isoanabasine as an example. Each Mosher amide can adopt two stable conformations (named rotamers) caused by hindered rotation around amide C-N bond. Via a three-step structural analysis of four rotamers, the absolute configuration of (-)-isoanabasine is deduced to be (R) on the basis of Newman projections, which makes it easy to understand and clarify the application of Mosher's method to cyclic secondary amines. Furthermore, it was observed that there was an unexpected ratio of rotamers of Mosher amide derived from (R)-isoanabasine and (R)-Mosher acid. This phenomenon implied that it is necessary to distinguish the predominant rotamer from the minor one prior to determining the absolute configuration while using this technique.
Resumo:
The purpose of the present work is to investigate the compositional difference of polypropylene-polyethylene block copolymers (PP-b-PE) manufactured industrially by the process of degradation and hydrogenation, respectively. Each of the PP-b-PE copolymers was fractionated into three fractions with heptane and chloroform. The compositions of the three fractions were characterized by C-13 nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy, as well as differential scanning calorimetry (DSC) and thermal fractionation. The results showed that the Chloroform-soluble fraction was amorphous ethylene-propylene rubber, and the content of the rubber in PP-b-PE manufactured by hydrogenation was less than that by degradation. The degree of crystallinity of the chloroform-insoluble fraction of the PP-b-PE manufactured by hydrogenation is higher than that of by degradation.
Resumo:
Metabolic profiles caused by rare earth complex were investigated using NMR and ICP-MS techniques. Male and female Wistar rats were treated orally with Changle (A kind of rare earth complex applied in agriculture to raise the production of crops) at dose of 2, 5 and 20 mg (.) kg(-1) body weight/day respectively for 90 d. Urine and serum samples are collected on 90 d. The relative concentrations of important endogenous metabolites in urine and serum are determined from H-1 NMR spectra and the contents of the four rare earth elements ( La, Ce, Pr and Nd) constituting Changle in the serum samples are measured by ICP-MS technique. Changle-induced renal and liver damage in rats is found based on the increase in the amounts of the amino acids, trimethylamine N-oxide, N, N-dimethyglycine, dimethylamine, succinate, aketoglutarate and ethanol as well as rare earth concentrations. The similarities and differentiations are found in the alteration patterns of metabolites and rare earth concentrations in serum.
Investigating mechanical response of single chain polystyrene particles by scanning probe techniques
Resumo:
Single chain polystyrene particles were obtained by dilute solution casting method. The sample with both single chain polystyrene particles and multi-chain (more than 1000 molecular chains) polystyrene particles was obtained by a little more concentrate solution. Force modulation technique showed that single chain polystyrene particles were softer than multichain polystyrene particles. On the other hand, nanoindentation experiments on multi-chain particles and bulk polystyrene manifested that the elastic modulus of multi-chain polystyrene particles was very close to that of bulk polystyrene. Therefore, it was concluded that single chain polystyrene particles were softer than bulk polystyrene,which indicated that the density of intrachain entanglement points in the single chain polystyrene particles was not as large as that of the interchain entanglement points in the bulk state.
Resumo:
A review is given on the recent development of scanning probe microscope (SPM) tip modification techniques for chemical force microscope, including the preparation and application of SPM tip modified by self-assembled monolayer, atomic force microscope (AFM) tip modified by biological molecule, scanning tunneling microscope tip modified by electrochemical method, AFM tip modified by carbon nanotube.
Resumo:
Circular dichroism (CD), fourier transform infrared (FTIR), and fluorescence spectroscopy were used to explore the effect of dimethyl sulfoxide (DMSO) on the structure and function of hemoglobin (Hb). The native tertiary structure was disrupted completely when the concentration of DMSO reached 50% (v/v), which was determined by loss of the characteristic Soret CD spectrum. Loss of the native tertiary structure could be mainly caused by breaking the hydrogen bonds, between the heme propionate groups and nearby surface amino acid residues, and by disorganizing the hydrophobic interior of this protein. Upon exposure of Hb to 52% DMSO for ca. 12 h in a D2O medium no significant change in 1652 cm(-1) band of the FTIR spectrum was produced, which demonstrated that alpha-helical structure predominated. When the concentration of DMSO increased to 57%: (1) the band at 1652 cm(-1) disappeared with the appearance of two new bands located at 1661 and 1648 cm(-1); (2) another new band at 1623 cm(-1) was attributed to the formation of intermolecular beta-sheet or aggregation, which was the direct consequence of breaking of the polypeptide chain by the competition of S=O groups in DMSO with C=O groups in amide bonds. Further increasing the DMSO concentration to 80%, the intensity at 1623 cm(-1) increased, and the bands at 1684, 1661 and 1648 cm(-1) shifted to 1688, 1664 and 1644 cm(-1), respectively. These changes showed that the native secondary structure of Hb was last and led to further aggregation and increase of the content of 'free' amide C=O groups. In pure DMSO solvent, the major band at 1664 cm(-1) indicated that almost all of both the intermolecular beta-sheet and any residual secondary structure were completely disrupted. The red shift of the fluorescence emission maxima showed that the tryptophan residues were exposed to a greater hydrophilic environment as the DMSO content increased. GO-binding experiment suggested that the biological function of Hb was disrupted seriously even if the content of DMSO was 20%. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The ion exchange mechanism accompanying the oxidation/reduction processes of cupric hexacyanoferrate-modified platinum electrodes in different aqueous electrolyte solutions has been studied by means of in situ probe beam deflection and the electrochemical quartz crystal microbalance technique. The results demonstrate that the charge neutrality of the film during the reoxidation/reduction process is accomplished predominantly by the movement of cations, but anions and/or solvent are also participator(s). Moreover, in KHC8H4O4 (potassium biphthalate) solution, the EQCM data obtained from chronoamperometry experiment are more complicated than those in KCl and K2SO4 solutions. (C) 1997 Elsevier Science Ltd.
Resumo:
The performance of Kalman filtering, synchronous excitation and numerical derivative techniques for the resolution of overlapping emission spectra in spectrofluorimetry was studied. The extent of spectrum overlap was quantitatively described by the separation degree D(s), defined as the ratio of the peak separation to the full width at half-maximum of the emission spectrum of the interferent. For the system of Rhodamine B and Rhodamine 6G with a large D(s) of about 0.4, both Kalman filtering and synchronous techniques are able to resolve the overlapping spectra well and to give satisfactory results while the derivative spectra are still overlapped with each other. Moreover, the sensitivities are greatly decreased in derivative techniques. For more closely spaced spectra emitted by the complexes of Al and Zn with 7-iodo-8-hydroxyquinoline-5-sulphonic acid (Ferron)-hexadecyltrimethylammonium bromide, the synchronous excitation technique cannot completely separate the overlapping peaks, although it increases the separation degree from 0.25 in the conventional spectra to 0.37 in the synchronous spectra. On the other hand, Kalman filtering is capable of resolving this system. When the Al/Zn intensity ratio at the central wavelength of Al was > 1, however, the accuracy and precision of the estimates for Zn concentration produced by the Kalman filter became worse. In this event, the combination of synchronous excitation and Kalman filtering can much improve the analytical results.