65 resultados para Tucídides, ca. 460-ca. 400 a. C.
Resumo:
The system Al2O3-B2O3-Ce2O3, with Al/B ratio varying from 4.5 to 2 and Ce/(Al + B) = 0.02, has been prepared at the temperature from 1 200 to 1 400 degrees C. Relationship between luminescence and matrices in the system Al2O3-B2O3-Ce2O3 was investigated. It was found that some changes of the matrices occurred with Al/B ratio varying from 4.5 to 2. These results lead to a great change in luminescence properties, indicating variation of Ce-surroundings of crystal field. With the decrease of the ratio from 3 to 2, the excitation and emission peaks shift to shorter wavelengths. it was also found that a new type of rare earth luminescent materials was obtained with appropriate Al/B ratio.
Resumo:
Oxidative dehydroaromatization of propylene was investigated by the pulse technique over two kinds of single oxide catalysts. With the Bi2O3 catalyst, the main dimer product was 1,5-hexadiene, and the dimerization activity was stable to pulse number even if the catalyst was partly reduced to the bulk. With the CeO2 catalyst, benzene was mainly formed instead of 1,5-hexadiene, but the activity decreased rapidly with increasing pulse number, indicating that only the lattice oxygen near the catalyst surface could be used for oxidative dimerization and the further aromatization. The Bi-Ce-O system catalyst was found in this study to give higher aromatization activity and showed better stability, compared to the Bi-Sn-O catalyst. Although the Bi-Ce-O catalyst was only a mixture of the two component oxides from X-ray diffraction analysis, there was a significant combination effect on the selectivity to benzene. The highest and the most stable selectivity of benzene was obtained at Bi/Ce = 1. In the TPD spectrum of Bi-Ce-O catalyst, there are not only the lattice oxygen (beta-oxygen) over 620-degrees-C due to the reduction of Bi2O3, but also a great deal of the alpha-oxygen desorbed about 400-degrees-C, which is considered the absorbed oxygen in the bulk. This absorbed oxygen could probably be a compensation of the lattice oxygen through the route of gaseous --> absorbed --> lattice oxygen in the binary catalyst system. By the kinetic study on the Bi-Ce-O catalyst, the dimer formation rate was the first-order with respect to the partial pressure of propylene and zero-order of oxygen. Although detail investigation would be made further, it was considered that the complete oxidation of propylene would mainly take place parallelly on some different sites, and the rate-determining step of propylene dimerization occurred probably between an adosrbed propylene and a gaseous one by an Eley-Rideal type mechanism.
Resumo:
The chlorination reaction of Li2CO3 with NH4Cl has been studied in detail by a series of thermal analysis methods. When NH4Cl/Li2CO3 mole ratio equals 4, Li2CO3 can be transformed into LiCl quantitatively in a stream of Ar gas flow. All residual NH4Cl is decomposed completely at 400 degrees C and carried away from the reaction cell by Ar gas.Analysis by X-Ray diffraction and Ion Chromatography show that there are almost no NH4Cl remained in The LiCl product. It is interested that the chlorination reaction can be applied to the determinations of phase diagram by thermal analysis method and the preparation of Al-Li alloy by electrolysis in molten salt.
Resumo:
水流体-导电性矿物相互作用是自然界中水流体-固体相互作用的重要组成部分,是许多矿床形成和演化的核心过程。迄今为止,绝大多数地质和地球化学家们对导电性矿物在水流体中的溶解机制普遍存在模糊的认识,认为水流体中导电性矿物的溶解和定位是一种简单的化学溶解和沉淀或简单的氧化溶解和还原定位过程,而实质上导电性矿物(组合)在水流体中的溶解是一种由电极电位差驱使下的类似于金属腐蚀的复杂电化学过程。当具有不同电极电位的矿物在溶液中相互接触,就会形成短路原电池发生电化学腐蚀。其中,电极电位低的矿物作为原电池的阳极,其溶解会加剧,而电极电位高的矿物作为原电池的阴极,其溶解会受到抑制。鉴于前人对水流体-导电性矿物相互作用的腐蚀原电池反应机理的模糊认识,本论文工作基于腐蚀原电池观点对高温高压条件下NaCl水流体体系中黄铁矿与金之间的原电池反应进行了研究。 在本工作中,作者与所在的研究小组一道,首先自行研制了一套可用于高温高压水热体系中导电性矿物腐蚀电化学原位测量的高压釜反应装置。该装置主体部件选用在高温高压下具有高强度、抗腐蚀等优良性能的工业纯钛制成。在该装置中,通过将热电偶直接插入高压釜釜腔内,成功地实现了釜内流体温度的准确测量和精确控制。对高压釜不同部位的测温结果表明,沿高压釜的径向与轴向均存在显著的温度梯度,其中釜塞保护锥体处的温度比釜内流体的温度低约8℃,釜外壁中心处与釜内的温度差约10℃;对400℃保温条件下釜内流体温度的直接测量表明,釜内温度波动小于0.5℃。在该装置中,通过将脆性导电性矿物制作成锥形电极,采用耐高温无机绝缘材料制作密封部件,利用锥体自紧式密封技术,成功地解决了脆性电极和电极引线的高压密封与高温绝缘问题;通过引入另一根辅助性的矿物电极引线,成功地解决了原位监测实验过程中矿物电极与引线接触处是否进水的难题,确保了实验的可信度。可行性试验结果表明,该方法不仅可用于高温高压下水流体-导电性矿物,而且可广泛用于水流体-金属间相互作用的腐蚀电化学原位测量研究。 利用上述自行研制的腐蚀电化学实验装置,本工作对高温高压(250-400℃;10-35 MPaNaCl水流体体系中黄铁矿-自然金原电池的热力学和动力学进行了实验研究。原位测量结果表明: (1)黄铁矿-金原电池的腐蚀电流变化与其开路电压的变化一致; (2)汽-液平衡条件下,黄铁矿-金原电池的开路电压和腐蚀电流在液相中比在汽相中要大; (3)在温度为400 C压力远离临界点的过热蒸气和超临界区域,压力在实验研究的范围内(10-35 MPa对黄铁矿-金原电池的开路电压和腐蚀电流均无显著的影响,随压力的增加两者仅略有增大,但当温度压力跨越临界点时,包括温压从汽-液平衡曲线同时进入超临界区以及温度恒定在400 C压力跨越临界点时,黄铁矿-金原电池的开路电压和腐蚀电流在临界点附近均发生突变。 (4)在本工作中实验的温度、压力和水流体体系条件下,由黄铁矿与金构成的原电池在大多数情况下黄铁矿为阳极,因此在原电池短路时黄铁矿在水流体中发生氧化溶解,而金则为阴极,在原电池短路时金的溶解受到保护,仅在个别狭窄的温度压力范围内情况才相反。 上述原位测量结果与电极表面水流体的性质以及黄铁矿和金的能带结构密切相关,运用混合电位理论、Butler-Volmer方程以及半导体电化学的波动能级模型对实验结果能进行很好的解释。
Resumo:
Mo surface species of molybdenum nitride and their changes under sulfiding conditions were investigated by XRD and XPS. Mo2N was synthesized by temperature-programmed reaction of MoO3, with NH3. The decomposition of the Mo3d spectra gave a Mo3d doubler which corresponded to Modelta+ (2 less than or equal to delta < 4), Mo4+ and Mo5+ Or Mo6+ species. The BE of the Mo species of passivated Mo2N shifted to higher energy level compared with the freshly prepared Mo2N due to the oxidation of Mo nitride during passivation. When Mo2N was contacted for 4 h with a 15% H2S-H-2 mixture at 400 degrees C, the XRD spectra did not reveal any new phase, which indicates a high stability of Mo2N against sulfidation, but XPS data showed the presence of sulfur, including S-0 and S2- species, and a decrease of the N/Mo atomic ratio revealed some changes in surface composition. More than one monolayer of Mo2N was transformed to sulfide. It is probable that the oxygen incorporated during passivation reacted with sulfur and formed a thin layer of molybdenum sulfide on the Mo2N surface. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
A Pd-Ag (24 wt%) alloy composite membrane was prepared by the magnetron sputtering. A gamma-Al2O3 membrane was synthesized by the sol-gel method and used as substrate of the Pd-Ag alloy film. The process parameters of the magnetron sputtering were optimized as a function of the compactness of the Pd-Ag alloy film. The best membrane with a thickness of 1 mu m was produced with a sputtering pressure of 2.7 Pa and a substrate temperature of 400 degrees C. The membrane had an H-2/N-2 permselectivity of 51.5-1000 and an H-2 permeation rate of 0.036-1.17 x 10(-5)cm(3)/cm(2).s. Pa, depending on operating conditions.
Resumo:
Er3+ doped multicomponent fluoride based glass was prepared. These precursor fluoride glass samples were then heated using different schedules. Crystalline phase particles were successfully precipitated in the multicomponent fluoride glass samples after heat treatment. The influence of heat treatment on the spectroscopic properties of Er3+ in multicomponent fluoride based glass samples were discussed. Small changes of the Judd-Ofelt parameters Omega(i) (i = 2,4,6) were found in multicomponent fluoride glass samples before and after heat treatment compared to oxyfluoride telluride glass. Preparation conditions used to produce transparent multicomponent fluoride glass ceramics doped with rare-earth ions are discussed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A systematic investigation of crystallographic and magnetic properties of nitride R3Fe29-xCrxN4 (R=Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed. The lattice constants and unit cell volume decrease with increasing rare earth atomic number from Nd to Dy, reflecting the lanthanide contraction. After nitrogenation the relative volume expansion of each nitride is around between 5% and 7%. The nitrogenation results in a good improvement in the Curie temperature, the saturation magnetization and anisotropy fields at 4.2 K, and room temperature for R3Fe29-xCrxN4. Magnetohistory effects of R3Fe29-xCrxN4 and R3Fe29-xCrx (R=Nd and Sm) are observed in a low field of 0.04 T. First order magnetization process occurs in Sm3Fe24.0Cr5.0N4 in magnetic fields of 2.8 T at 4.2 K. After nitrogenation, the easy magnetization direction of Sm3Fe24.0Cr5.0 is changed from the easy-cone structure to the uniaxial. The good intrinsic magnetic properties of Sm3Fe24.0Cr5.0N4 make this compound a hopeful candidate for new high-performance hard magnets. (C) 1998 American Institute of Physics.
Resumo:
By using a combinatorial screening method based on the self-consistent field theory (SCFT) for polymer systems, the micro-phase morphologies of the H-shaped (AC)B(CA) ternary block copolymer system are studied in three-dimensional (3D) space. By systematically varying the volume fractions of the components A, B, and C, six triangle phase diagrams of this H-shaped (AC)B(CA) ternary block copolymer system with equal interaction energies among the three components are constructed from the weaker segregation regime to the strong segregation regime, In this study, thirteen 3D micro-phase morphologies for this H-shaped ternary block copolymer system are identified to be stable and seven 3D microphase morphologies are found to be metastable.
Resumo:
Tb(111) and Ca(11) ion equilibria in the Presence of glutamic acid and glutamine were studied by potentiometric titration at 37 degrees C and an ionic strength of 0.15mol/L(NaCl). The stability constants for Tb(111) and Ca(11) complexes in the systems were obtained. The species and their distribution in the systems were discussed.
Resumo:
An electrolysis technique for co-deposition of Ca2+ and Na+ at the liquid lead cathode was put forward. The experiment was carried out at an electrolysis temperature below 650 degrees C and had a current efficiency of 98%, which are respectively 100 similar to 300 degrees C lower and 15% similar to 30% higher than those reported both at home and abroad.
Resumo:
With XRD, R-T, and ac chi measurements a comparative study on the doping effects of 3d elements in Bi(1.5)Pb(0.2)Sr(2)Ca(2)Cu(2.8)M(0.2)O(y) (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, or Zn) has been carried out. The effects of the former five members are significantly different, both on phase formed and on T-c, from the latter four. It seems that the effect on phase stabilization correlates with the valency of the doped cation. In connection with the instability of the 2223 phase, the correlation has been discussed.
Resumo:
Bi1-xLaxSrMn2O6 and BiSr1-xCaxMn2O6 are prepared by solid state reaction. They are n-type semiconductors with ferromagnetism at room temperture. When Bi is substituted partly by rare earth, a negative magnetoresistance effect is observed in the pellet of Bi1-xLaxSrMn2O6. There are semiconductor-metal transitions at 820 K in BiSrMn2O6. The transitions are attributed to the magnetic transition at high temperature. The substitution of Ca for Sr makes the transition temperature increase. However, when Bi is partly substituted by La, the solid solution does not change into metal. (C) 1996 Academic Press, Inc.