201 resultados para TRANSISTORS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ambipolar organic field-effect transistors (OFETs) are produced, based on organic heterojunctions fabricated by a two-step vacuum-deposition process. Copper phthalocyanine (CuPc) deposited at a high temperature (250 degrees C) acts as the first (p-type component) layer, and hexadecafluorophthalocyaninatocopper (F16CuPc) deposited at room temperature (25 degrees C) acts as the second (n-type component) layer. A heterojunction with an interpenetrating network is obtained as the active layer for the OFETs. These heterojunction devices display significant ambipolar charge transport with symmetric electron and hole mobilities of the order of 10(-4) cm(2) V-1 s(-1) in air. Conductive channels are at the interface between the F16CuPc and CuPc domains in the interpenetrating networks. Electrons are transported in the F16CuPc regions, and holes in the CuPc regions. The molecular arrangement in the heterojunction is well ordered, resulting in a balance of the two carrier densities responsible for the ambipolar electrical characteristics. The thin-film morphology of the organic heterojunction with its interpenetrating network structure can be controlled well by the vacuum-deposition process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two novel phenanthrene-based conjugated oligomers were synthesized and used as p-channel semiconductors in field-effect transistors; they exhibit high mobility and excellent stability during long-time ambient storage and under UV irradiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ambipolar organic field-effect transistors (OFETs) based on the organic heterojunction of copper-hexadecafluoro-phthalocyanine (F16CuPc) and 2,5-bis(4-biphenylyl) bithiophene (BP2T) were fabricated. The ambipolar OFETs eliminated the injection barrier for the electrons and holes though symmetrical Au source and drain electrodes were used, and exhibited air stability and balanced ambipolar transport behavior. High field-effect mobilities of 0.04 cm(2)/V s for the holes and 0.036 cm(2)/V s for the electrons were obtained. The capacitance-voltage characteristic of metal-oxide-semiconductor (MOS) diode confirmed that electrons and holes are transported at F16CuPc and BP2T layers, respectively. On this ground, complementary MOS-like inverters comprising two identical ambipolar OFETs were constructed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-type organic thin-film transistors (OTFTs) employing hexadecafluorophthalocyaninatocopper (F16CuPc) as active layer and p-type copper phthalocyanine (CuPc) as buffer layer are demonstrated. The highest field-effect mobility is 7.6x10(-2) cm(2)/V s. The improved performance was attributed to the decrease of contact resistance due to the introduction of highly conductive F16CuPc/CuPc organic heterojunction. Therefore, current method provides an effective path to improve the performance of OTFTs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A diode with a reverse rectifying characteristics was fabricated based on the organic heterojunction of copper phthalocyanine (CuPc) and copper-hexadecafluoro-phthalocyanine (F16CuPc). At the heterojunction interface, HOMO of CuPc is bended upwards and LUMO of F16CuPc is bended downwards, since the charge carriers were accumulated at both side of the interface, electrons in F16CuPc and holes in CuPc. The thickness of holes accumulated at the CuPc layer is about 10 nm. which was determined by fabricating organic field-effect transistors with active layers in series of thickness. By utilizing the heterojunction-effect, the threshold voltage in organic transistors can be modified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The device performances of copper phthalocyanine (CuPc)-based organic thin-film transistors (OTFTs) in main components of air were studied. We found that the device stored in O-2 humidified by water exhibited the changes of electric characteristics including positive-shifted threshold voltage and lower I-on/I-off but unchanged mobility, which was similar to the device exposed to room air. These changes are attributed to O-2 doping to copper phthalocyanine thin film assisted by water. Furthermore, a cross-linked polyvinyl alcohol film was used as encapsulation layer to prevent the permeation of O-2 and water, which resulted in excellent stability even when devices were placed in air for over a year. Therefore, current studies will push the development of OTFTs for practical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the fabrication of organic thin-film transistors (OTFTs) with copper phthalocyanine (CuPc) as the semiconductor and calcium fluoride (CaF2) as the gate dielectric on the glass substrate. The fabricated transistors show a gate voltage dependent carrier field effect mobility that ranges from 0.001 to 0.5 cm(2) V-1 s(-1). In the devices, the CaF2 dielectric is formed by thermal evaporation; thus OTFTs with a top-gate structure can be fabricated. This provides a convenient way to produce high-performance OTFTs on a large scale and should be useful for the integration of organic displays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic thin film transistors based on pentacene are fabricated by the method of full evaporation. The thickness of insulator film can be controlled accurately, which influences the device operation voltage markedly. Compared to the devices with a single-insulator layer, the electric performance of devices by using a double-insulator as the gate dielectric has good improvement. It is found that the gate leakage current can be reduced over one order of magnitude, and the on-state current can be enhanced over one order of magnitude. The devices with double-insulator layer exhibit field-effect mobility as large as 0.14 cm(2)/Vs and near the zero threshold voltage. The results demonstrate that using proper double insulator as the gate dielectrics is an effective method to fabricate OTFTs with high electrical performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An organic thin-film transistor (OTFT) having a low-dielectric polymer layer between gate insulator and source/drain electrodes is investigated. Copper phthalocyanine (CuPc), a well-known organic semiconductor, is used as an active layer to test performance of the device. Compared with bottom-contact devices, leakage current is reduced by roughly one order of magnitude, and on-state current is enhanced by almost one order of magnitude. The performance of the device is almost the same as that of a top-contact device. The low-dielectric polymer may play two roles to improve OTFT performance. One is that this structure influences electric-field distribution between source/drain electrodes and semiconductor and enhances charge injection. The other is that the polymer influences growth behavior of CuPc thin films and enhances physical connection between source/drain electrodes and semiconductor channel. Advantages of the OTFT having bottom-contact structure make it useful for integrated plastic electronic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using self-consistent calculations of million-atom Schrodinger-Poisson equations, we investigate the I-V characteristics of tunnelling and ballistic transport of nanometer metal oxide semiconductor field effect transistors (MOSFET) based on a full 3-D quantum mechanical simulation under nonequilibtium condition. Atomistic empirical pseudopotentials are used to describe the device Hamiltonian and the underlying bulk band structure. We find that the ballistic transport dominates the I-V characteristics, whereas the effects of tunnelling cannot be neglected with the maximal value up to 0.8mA/mu m when the channel length of MOSFET scales down to 25 nm. The effects of tunnelling transport lower the threshold voltage V-t. The ballistic current based on fully 3-D quantum mechanical simulation is relatively large and has small on-off ratio compared with results derived from the calculation methods of Luo et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes smart universal multiple-valued (MV) logic gates by transferring single electrons (SEs). The logic gates are based on MOSFET based SE turnstiles that can accurately transfer SEs with high speed at high temperature. The number of electrons transferred per cycle by the SE turnstile is a quantized function of its gate voltage, and this characteristic is fully exploited to compactly finish MV logic operations. First, we build arbitrary MV literal gates by using pairs of SE turnstiles. Then, we propose universal MV logic-to-value conversion gates and MV analog-digital conversion circuits. We propose a SPICE model to describe the behavior of the MOSFET based SE turnstile. We simulate the performances of the proposed gates. The MV logic gates have small number of transistors and low power dissipations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A CMOS voltage-mode multi-valued literal gate is presented. The ballistic electron transport characteristic of nanoscale MOSFETs is smartly used to compactly achieve universal radix-4 literal operations. The proposed literal gates have small numbers of transistors and low power dissipations, which makes them promising for future nanoscale multi-valued circuits. The gates are simulated by HSPICE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For realization of hexagonal BDD-based digital systems, active and sequential circuits including inverters, flip flops and ring oscillators are designed and fabricated on GaAs-based hexagonal nanowire networks controlled by Schottky wrap gates (WPGs), and their operations are characterized. Fabricated inverters show comparatively high transfer gain of more than 10. Clear and correct operation of hexagonal set-reset flip flops (SR-FFs) is obtained at room temperature. Fabricated hexagonal D-type flip flop (D-FF) circuits integrating twelve WPG field effect transistors (FETs) show capturing input signal by triggering although the output swing is small. Oscillatory output is successfully obtained in a fabricated 7-stage hexagonal ring oscillator. Obtained results confirm that a good possibility to realize practical digital systems can be implemented by the present circuit approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel uncalibrated CMOS programmable temperature switch with high temperature accuracy is presented. Its threshold temperature T-th can be programmed by adjusting the ratios of width and length of the transistors. The operating principles of the temperature switch circuit is theoretically explained. A floating gate neural MOS circuit is designed to compensate automatically the threshold temperature T-th variation that results form the process tolerance. The switch circuit is implemented in a standard 0.35 mu m CMOS process. The temperature switch can be programmed to perform the switch operation at 16 different threshold temperature T(th)s from 45-120 degrees C with a 5 degrees C increment. The measurement shows a good consistency in the threshold temperatures. The chip core area is 0.04 mm(2) and power consumption is 3.1 mu A at 3.3V power supply. The advantages of the temperature switch are low power consumption, the programmable threshold temperature and the controllable hysteresis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fully 3-D atomistic quantum mechanical simulation is presented to study the random dopant-induced effects in nanometer metal-oxide-semiconductor field-effect transistors. The empirical pseudopotential is used to represent the single particle Hamiltonian, and the linear combination of bulk band method is used to solve the million atom Schrodinger equation. The gate threshold fluctuation and lowering due to the discrete dopant configurations are studied. It is found that quantum mechanical effects increase the threshold fluctuation while decreasing the threshold lowering. The increase of threshold fluctuation is in agreement with the researchers' early study based on an approximated density gradient approach. However, the decrease in threshold lowering is in contrast with the density gradient calculations.