185 resultados para THRESHOLD STRESS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a slice-sampling method and study the ensemble evolution of a large finite nonlinear system in order to model materials failure. There is a transitional region of failure probability. Its size effect is expressed by a slowly decaying scaling law. In a meso-macroscopic range (similar to 10(5)) in realistic failure, the diversity cannot be ignored. Sensitivity to mesoscopic details governs the phenomena. (C) 1997 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elastodynamic stress intensity factor histories of an unbounded solid containing a semi-infinite plane crack that propagates at a constant velocity under 3-D time-independent combined mode loading are considered. The fundamental solution, which is the response of point loading, is obtained. Then, stress intensity factor histories of a general loading system are written out in terms of superposition integrals. The methods used here are the Laplace transform methods in conjunction with the Wiener-Hopf technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A second-order dynamic model based on the general relation between the subgrid-scale stress and the velocity gradient tensors was proposed. A priori test of the second-order model was made using moderate resolution direct numerical simulation date at high Reynolds number ( Taylor microscale Reynolds number R-lambda = 102 similar to 216) for homogeneous, isotropic forced flow, decaying flow, and homogeneous rotating flow. Numerical testing shows that the second-order dynamic model significantly improves the correlation coefficient when compared to the first-order dynamic models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature and stress field in a thin plate with collinear cracks interrupting an electric current field are determined. This is accomplished by using a complex function method that allows a direct means of finding the distribution of the electric current, the temperature and stress field. Temperature dependency for the heat-transfer coefficient, coefficient of linear expansion and the elastic modulus are considered. As an example, temperature distribution is calculated for an alloy (No. GH2132) plate with two collinear cracks under high temperature. Relationships between the stress, temperature, electric density and crack length are obtained. Crack trajectories emanating from existing crack are predicted by application of the strain energy density criterion which can also be used for finding the load carrying capacity of the cracked plate. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi-weight function method is developed to solve the plane problem of two bonded dissimilar materials containing a crack along the bond. From equilibrium equation, stress and strain relationship, conditions of continuity across interface and free crack surface, the stress and displacement fields were obtained. The eigenvalue of these fields is lambda. Semi-weight functions were obtained as virtual displacement and stress fields with eigenvalue-lambda. Integral expression of fracture parameters, K-I and K-II, were obtained from reciprocal work theorem with semi-weight functions and approximate displacement and stress values on any integral path around crack tip. The calculation results of applications show that the semi-weight function method is a simple, convenient and high precision calculation method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The singular nature of the dynamic stress fields around an interface crack located between two dissimilar isotropic linearly viscoelastic bodies is studied. A harmonic load is imposed on the surfaces of the interface crack. The dynamic stress fields around the crack are obtained by solving a set of simultaneous singular integral equations in terms of the normal and tangent crack dislocation densities. The singularity of the dynamic stress fields near the crack tips is embodied in the fundamental solutions of the singular integral equations. The investigation of the fundamental solutions indicates that the singularity and oscillation indices of the stress fields are both dependent upon the material constants and the frequency of the harmonic load. This observation is different from the well-known -1/2 oscillating singularity for elastic bi-materials. The explanation for the differences between viscoelastic and elastic bi-materials can be given by the additional viscosity mismatch in the case of viscoelastic bi-materials. As an example, the standard linear solid model of a viscoelastic material is used. The effects of the frequency and the material constants (short-term modulus, long-term modulus and relaxation time) on the singularity and the oscillation indices are studied numerically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the sub-region generalized variational principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For an anti-plane problem, the differential operator is self-adjoint and the corresponding eigenfunctions belong to the Hilbert space. The orthogonal property between eigenfunctions (or between the derivatives of eigenfunctions) of anti-plane problem is exploited. We developed for the first time two sets of radius-independent orthogonal integrals for extraction of stress intensity factors (SIFs), so any order SIF can be extracted based on a certain known solution of displacement (an analytic result or a numerical result). Many numerical examples based on the finite element method of lines (FEMOL) show that the present method is very powerful and efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The close form solutions of deflections and curvatures for a film-substrate composite structure with the presence of gradient stress are derived. With the definition of more precise kinematic assumption, the effect of axial loading due to residual gradient stress is incorporated in the governing equation. The curvature of film-substrate with the presence of gradient stress is shown to be nonuniform when the axial loading is nonzero. When the axial loading is zero, the curvature expressions of some structures derived in this paper recover the previous ones which assume the uniform curvature. Because residual gradient stress results in both moment and axial loading inside the film-substrate composite structure, measuring both the deflection and curvature is proposed as a safe way to uniquely determine the residual stress state inside a film-substrate composite structure with the presence of gradient stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal stress wave and spallation in aluminium alloy exposed to a high fluency and low energy electron beams are studied theoretically. A simple model for the study of energy deposition of electrons in materials is presented on the basis of some empirical formulae. Under the stress wave induced by energy deposition, microcracks and/or microvoids may appear in target materials, and in this case, the inelastic volume deformation should not vanish. The viscoplastic model proposed by Bodner and Partom with corresponding Gurson's yield function requires modification for this situation. The new constitutive model contains a scalar field variable description of the material damage which is taken as the void volume fraction of the polycrystalline material. Incorporation of the damage parameter permits description of rate-dependent, compressible, inelastic deformation and ductile fracture. The melting phenomenon has been observed in the experiment, therefore one needs to take into account the melting process in the intermediate energy deposition range. A three-phase equation of state used in the paper provides a more detailed and thermodynamical description of metals, particularly, in the melting region. The computational results based on the suggested model are compared with the experimental test for aluminium alloy, which is subjected to a pulsed electron beam with high fluency and low energy. (C) 1997 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic stress intensity factor histories for a half plane crack in an otherwise unbounded elastic body are analyzed. The crack is subjected to a traction distribution consisting of two pairs of suddenly-applied shear point loads, at a distance L away from the crack tip. The exact expression for the combined mode stress intensity factors as the function of time and position along the crack edge is obtained. The method of solution is based on the direct application of integral transforms together with the Wiener-Hopf technique and the Cagniard-de Hoop method, which were previously believed to be inappropriate. Some features of solutions are discussed and the results are displayed in several figures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a mathematical model of dynamic fracture in porous ductile materials under intense dynamic general loading is developed. The mathematical model includes the influence of inertial effects and material rate sensitivity, as well as the contribution of surface energy of a void and material work-hardening. In addition, the condition of the void compaction is considered as well. The threshold stresses for the void growth and compaction are obtained. A simple criterion for ductile fracture which is associated with material distention and plastic deformation is adopted. As an application of the theoretical model, the processes of two-dimensional spallation in LY12 aluminum alloy are successfully simulated by means of two-dimensional finite-difference Lagrangian code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic stress intensity factor history for a semi-infinite crack in an otherwise unbounded elastic body is analyzed. The crack is subjected to a pair of suddenly-applied point loadings on its faces at a distance L away from the crack tip. The exact expression for the mode I stress intensity factor as a function of time is obtained. The method of solution is based on the direct application of integral transforms, the Wiener-Hopf technique and the Cagniard-de Hoop method. Due to the existence of the characteristic length in loading this problem was long believed a knotty problem. Some features of the solutions are discussed and graphical result for numerical computation is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method is presented for calculating the values of K-I and K-II in the elasticity solution at the tip of an interface crack. The method is based on an evaluation of the J-integral by the virtual crack extension method. Expressions for calculating K-I and K-II by using the displacements and the stiffness derivative of the finite element solution and asymptotic crack tip displacements are derived. The method is shown to produce very accurate solutions even with coarse element mesh.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elastic plane problem of a rigid co-circular arc inclusion under arbitrary loads is dealt with. Applying Schwarz's reflection principle integrated with the analysis of the singularity of complex stress functions, the general solution of the problem is found and several closed-form solutions to some problems of practical importance are given. Finally, the stress distribution at the arc inclusion end is examined and a comparison is made with that of the rigid line inclusion end to show the effect of curvature.