173 resultados para Sensor output
Resumo:
A novel fiber Bragg grating (FBG) pressure sensor with the enhanced sensitivity has been demonstrated. A piston-like diaphragm with a hard core in the center is used to enhance the sensitivity. Both the theoretical analysis and the experimental result show that the radius of the hard core has significant effect on the pressure sensitivity. When the radius of the hard core is 1.5 mm, a pressure sensitivity of 7.23 nm/MPa has been achieved.
Resumo:
Light transmission through a single subwavelength slit surrounded by periodic grooves in layered films consisting of Au and dielectric material is analyzed by the finite difference time domain method in two dimensions. The results show that the transmission field can be enhanced by the corrugations on the output plane, which is a supplementary explanation for the extraordinary optical transmission.
Resumo:
Sapphire substrates were patterned by a chemical wet etching technique in the micro- and nanoscale to enhance the light output power of InGaN/GaN light-emitting diodes (LEDs). InGaN/GaN LEDs on a pyramidal patterned sapphire substrate in the microscale (MPSS) and pyramidal patterned sapphire substrate in the nanoscale (NPSS) were grown by metalorganic chemical vapor deposition. The characteristics of the LEDs fabricated on the MPSS and NPSS prepared by wet etching were studied and the light output powers of the LEDs fabricated on the MPSS and NPSS increased compared with that of the conventional LEDs fabricated on planar sapphire substrates. In comparison with the planar sapphire substrate, an enhancement in output power of about 29% and 48% is achieved with the MPSS and NPSS at an injection current of 20 mA, respectively. This significant enhancement is attributable to the improvement of the epitaxial quality of GaN-based epilayers and the improvement of the light extraction efficiency by patterned sapphire substrates. Additionally, the NPSS is more effective to enhance the light output power than the MPSS. (c) 2008 American Institute of Physics.
Resumo:
We present a novel reference compensation method for eliminating environmental noise in interferometric wavelength shift demodulation for dynamic fiber Bragg grating (FBG) sensors. By employing a shielded wavelength-division-multiplexed reference FBG in the system the environmental noise is mea, sured from the reference channel, and then subtracted from the demodulation result of each sensor channel. An approximate 40 dB reduction of the environmental noise has been experimentally achieved over a frequency range from 20 Hz to 2 kHz. This method is also suitable for the elimination of broadband environmental noise. The corresponding FBG sensor array system proposed in this paper has shown a wave-length resolution of 7 x 10(-4) pm/root Hz. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
A fiber Bragg grating (FBG) pressure sensor packaged by using a hard core in the membrane is presented. By utilizing the unique membrane-based FBG packagine method, its pressure sensitivity has been effectively enhanced. The pressure sensitivity of the FBG reaches 5.75 X 10(-3)/MPa within the pressure range of 0.0.16 Mpa. (C) 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51 1279-1281, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.24335
Resumo:
A fiber Bragg grating (FBG) pressure sensing scheme based on a flat diaphragm and an L-shaped lever is presented. An L-shaped lever transfers the pressure-induced defection of the flat diaphragm to the axial elongation of the FBG. The curve where the L-shaped lever contacts the diaphragm is a segment of an Archimedes spiral, which is used to enhance the responsivity. Because the thermal expansion coefficient of the quartz-glass L-shaped lever and the steel sensor shell is different, the temperature effect is compensated for by optimizing the dimension parameters. Theoretical analysis is presented, and the experimental results show that an ultrahigh pressure responsivity of 244 pm/kPa and a low temperature responsivity of 2.8 pm/degrees C are achieved. (c) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI 10.1117/1.3081058]
Resumo:
A novel fiber Bragg grating (FBG) pressure sensor based on the double shell cylinder with temperature compensation is presented. in the sensing scheme, a sensing FBG is affixed in the tangential direction on the outer surface of the inner cylinder, and another FBG is affixed in the axial direction to compensate the temperature fluctuation. Based on the theory of elasticity, the theoretical analysis of the strain distribution of the sensing shell is presented. Experiments are carried out to test the performance of the sensor. A pressure sensitivity of 0.0937 nm/MPa has been achieved. The experimental results also demonstrate that the two FBGs have the same temperature sensitivity, which can be utilized to compensate the temperature induced wavelength shift during the pressure measurement. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
By using a semiconductor saturable-absorber output coupler as a mode-locking device, we experimentally realized the operation of a diode-pumped passively mode-locked Nd:YVO4 laser. Stable laser pulses with duration of 2.3 ps were generated at the output power of about 1 W. With increasing the pump power to 9 W, the maximum mode-locked power of 1.7 W was obtained, which corresponds to a slope conversion efficiency of 44% and optical-to-optical conversion efficiency of 19%.
Resumo:
A polarization-insensitive semiconductor optical amplifier (SOA) with a very thin active tensile-strained InGaAs bulk has been fabricated. The polarization sensitivity of the amplifier gain is less than 1 dB over both the entire range of driving current and the 3 dB optical bandwidth of more than 80 nm. For optical signals of 1550 nm wavelength, the SOA exhibits a high saturation output power +7.6 dBm together with a low noise figure of 7.5 dB, fibre-to-fibre gain of 11.5 dB, and low polarization sensitivity of 0.5 dB. Additionally, at the gain peak 1520 nm, the fibre-to-fibre gain is measured to be 14.1 dB.
Resumo:
A new packaged fiber Bragg grating using bimetal cantilever beam as the strain agent is presented. The grating is two-point attached on one specific surface of the bimetal beam which consists of two metallic material with different thermal-expansion coefficient. Thereby the grating can be compressed or stretched along with the cantilever beam while temperature varies and temperature compensation can be realized. At the same time, grating chirping can be avoided for the particular attaching method. Experiment results demonstrated that the device is able to automatically compensate temperature induced wavelength shift. The temperature dependence of Bragg wavelength reduced to -0.4 pm/degrees C over the temperature range from -20 to 60 degrees C. This fiber grating package technique is cost effective and can be used in strain sensing. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
We have demonstrated an electroabsorption modulator and semiconductor optical amplifier monolithically integrated with novel dual-waveguide spot-size converters (SSC) at the input and output ports for low-loss coupling to a planar light-guide circuit silica waveguide or cleaved single-mode optical fibre. The device was fabricated by means of selective-area MOVPE growth, quantum well intermixing and asymmetric twin waveguide technologies with only a three-step low-pressure MOVPE growth. For the device structure, in the SOA/EAM section, a double ridge structure was employed to reduce the EAM capacitances and enable high bit-rate operation. In the SSC sections, buried ridge structure (BRS) was incorporated. Such a combination of ridge, ATG and BRS structure is reported for the first time in which it can take advantage of easy processing of the ridge structure and the excellent mode characteristic of BRS. At the wavelength range of 1550-1600 nm, lossless operation with extinction ratios of 25 dB dc and more than 10 GHz 3 dB bandwidth is successfully achieved, The beam divergence angles of the input and output ports of the device are as small as 8.0 degrees x 12.6 degrees, resulting in 3.0 dB coupling loss with a cleaved single-mode optical fibre.
Resumo:
We have demonstrated a 1.60 mu m ridge-structure laser diode and electroabsorption modulator monolithically integrated with buried-ridge-structure dual-waveguide spot-size converters at the input and output ports for low-loss coupling to a cleaved single-mode optical fibre by means of selective area growth and asymmetric twin waveguide technologies. The devices emit in single transverse and quasi-single longitudinal modes with a side mode suppression ratio of 25.6 dB. These devices exhibit 3 dB modulation bandwidth of 15.0 GHz and modulator extinction ratios of 14.0 dB dc. The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 7.3 degrees x 10.6 degrees, respectively, resulting in 3.0 dB coupling loss with a cleaved single-mode optical fibre.
Resumo:
We report on a VSAL structure fabricated by a 650 nm edge emitting laser diode with an Au-coated facet and an aperture size of 250 x 500 nm. The far field output power can maintain at 1 mW and the power density is 7.5 mW/mu m(2). Some properties of the VSAL including the threshold current change, the red-shift of the spectral position, and the strong relative-intensity-noise are presented. The physical mechanisms responsible for these phenomena are also discussed, which may contribute to the understanding and application of the potential device for near-field optics.
Resumo:
A series of hydrogenated amorphous silicon carbide (a-Si1-xCx:H) films were prepared by plasma-enhanced chemical vapour deposition (PECVD) using a gas mixture of silane, methane, and hydrogen as the reactive source. The previous results show that a high excitation frequency, together with a high hydrogen dilution ratio of the reactive gases, allow an easier incorporation of the carbon atoms into the silicon-rich a-Si1-xCx:H film, widen the valence controllability. The data show that films with optical gaps ranging from about 1.9 to 3.6 eV could be produced. In this work the influence of the hydrogen dilution ratio of the reactive gases on the a-Si1-xCx:H film properties was investigated. The microstuctural and photoelectronic properties of the silicon carbide films were characterized by Rutherford backscattering spectrometry (RBS), elastic recoil detection analysis (ERDA), and FT-IR spectrometry. The results show that a higher hydrogen dilution ratio enhances the incorporation of silicon atoms in the amorphous carbon matrix for carbon-rich a-Si1-xCx:H films. One pin structure was prepared by using the a-Si1-xCx:H film as the intrinsic layer. The light spectral response shows that this structure fits the requirement for the top junction of colour sensor. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We have demonstrated stable self-starting passive mode-locking in a diode-end-pumped Nd: YVO4 laser using a semiconductor saturable absorber mirror (SESAM). An ln(0.25)Ga(0.75)As single quantum-well SESAM, which was grown by the metalorganic chemical-vapor deposition technique at low temperature, acts as a passive mode-locking device and an output coupler at the same time. Continuous-wave mode-locked transform-limited pulses were obtained at 1064 nm with a pulse duration of 2.1 ps and an average output power of 1.28 W at a repetition rate of 96.5 MHz. (c) 2005 American Institute of Physics.