252 resultados para SINGLE-CRYSTAL STRUCTURE
Resumo:
Co(En)(3)MoO4 was synthesized by using the method of hydrothermal synthesis and characterized by elemental analysis, IR, ESR and single-crystal X-ray methods. It crystallizes in hexagonal space group P (3) over bar C1 with a=1.596 4(2) nm, b=1.596 4(2) nm, c = 0.993 5(2) nm, alpha=beta=90 degrees gamma=120 degrees, M-c=399.18, V=2.192 6(6) nm(3), D-c=1.814 g/nm(3), Z=6, F(000)=1 2181 R-1=0.070 3, R-w=0.220 7. According to separation of anion which acted on electrostatic potential, the anion and cation ions formed a type of organic and inorganic material.
Resumo:
Second order nonlinear optical (NLO) properties of single crystals with complex structures are studied, from the chemical bond viewpoint. Contributions of each type of constituent chemical bond to the total linearity and nonlinearity are calculated from the actual crystal structure, using the chemical bond theory of complex crystals and the modified bond charge model. We have quantitatively proposed certain relationships between the crystal structure and its NLO properties. Several relations have been established from the calculation. Our method makes it possible for us to identify, predict and modify new NLO materials according to our needs. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A new Er(III)-Na(I) coordination polymer of stoichiometry [NaEr2L5(H2O)(6)(NO3)](NO3). 3.5H(2)O (HL = picolinic acid N-oxide) has been synthesized and characterized by single-crystal X-ray analysis. Crystals are triclinic, P (1) over bar with a = 9.823(2), b = 12.453(2), c = 20.643(4) Angstrom; alpha = 98.49(3), beta = 101.40(3), gamma = 108.69(3)degrees; V = 2284(1) Angstrom(3); Z = 2. Of the two independent eight-coordinate erbium(III) ions in this complex, one is surrounded by four bidentate chelating L ligands, and the other by one bidentate chelating L ligand, four aqua ligands and two anti-carboxylate oxygen atoms from two neighboring [ErL4] units. The sodium(I) ion is in a distorted octahedral environment, being coordinated by a unidentate nitrate anion, three aqua ligands and two anti-carboxylate oxygen atoms from two adjacent [ErL4] units. The complex is built from zigzag chains of syn-anti carboxylate-bridged erbium(III) moieties directed in the a direction, which are cross-linked pairwise by aqua-bridged dimeric sodium(I) units. The resulting composite polymeric chains are further connected by hydrogen bonds to form a three-dimensional network.
Resumo:
K4H2CoW12O40. 2Ti02 . 9H(2)O crystallizes from an aqueous solution of Na2WO4, Co(OAc)(2) and Ti(SO4)(2). The compound has very similar i.r. and u.v. spectra to those of [CoW12O40](6-) and [CoW11TiO40](8-) but its polarographic behaviour is different from that of [CoW11TiO40](8-) and exhibits only reduction of tungsten(VI). A single crystal structural analysis indicates that this compound consists of the heteropolyanion [CoW12O40](6-), titanium-oxygen chain, potassium ions and water molecules.
Resumo:
The binuclear complex [Ni(oxae)Ni(phen)2](ClO4)(2) . H2O (oxae=N,N'bis(2-aminoethyl) oxamido dianion, phen = 1, 10-phenanthroline) was prepared from the planar monomeric complex Ni(oxae) and characterized through analytical and spectroscopic measurements. The structure of [Ni(oxae)Ni(phen)(2)] (ClO4)2 . 3H(2)O was investigated by single-crystal X-ray analysis. The complex has an extended oxamido-bridged structure and consists of two nickel(II) ions, one of them in a square planar environment and another in a distorted octahedral environment. The Ni-Ni distance is 5.267 Angstrom.
Resumo:
A lanthanum coordination compound with glycine {[La(Gly)3.2H2O].(ClO4)3}n (Gly = NH+ 3-CH2-COO-) was synthesized and obtained in the form of single crystals. Its X-ray crystal structure has been determined and the IR spectrum has been studied. Crystallo
Resumo:
A novel framework material, Zn-2(HPO4)(3).H3NCH2CH2NH3, has been synthesised and its crystal structure determined by single crystal X-ray diffraction.
Resumo:
The single crystal of heteropoly blue, HsSiMo12O40.12H2O, the reduced product of molybdenum-silicon heteropoly acid, was prepared by electrochemical reduction and evaporation in nitrogen atmosphere. The Crystal structure of the product was determined. The heteropoly blue H8SiMo12O40.12H2O, Crystallizes space group P1BAR a = 1.3769 (3) nm, b = 1.4346 (4) nm, c = 1.4134 (4) nm, alpha = 120.47 (2)-degrees, beta = 110.70 (2)-degrees, gamma = 66.11 (2)-degrees, Z = 2, R = 0.0608. The heteropoly blue anion was determined to have Keggin Structure and alpha-isomer and it remained the structure of the unreduced heteropoly acid anion. But the distortion of the structure and the changes of bond length and bond angle take place obviously. The four Mo5+ Positions were determined in the structure.
Resumo:
The crystal structure of the title compound has been determined from single crystal X-ray diffraction. The complex crystallizes in the triclinic space group P1 with Z=2. Lattice parameters are: a = 0.7296(1), b = 1.0110(3), c = 1.2814(4) nm; alpha = 90.84(2), beta = 101.17(2), gamma = 92.52(2)-degrees. Intensity data were collected on a Nicolet R3M/E four-circle diffractometer using MoK alpha (lambda = 0.071073 nm) radiation. The structure was solved by Patterson and Fourier techniques and refined by least-squares techniques to R = 0.065. The structure of the complex consists of tetrahedral ZnCl42- anions which form a two-dimensional sheets. Tetrahedral ZnCl42- anions are sandwiched between two hydrocarbon layers which consist of [NH3(CH2)10NH3]2+ cations. Each [NH3(CH2)10NH3]2+ group is in a gauche bond between C atoms near NH3 polar heads.
Resumo:
The title complex has beep synthesized by the reaction of CaCl2, with trimethyl phosphate. Its Infrared spectra from 4000 to 100 cm(-1) measured. The assignment of acme absorption bands was discussed. It is found that the stretching vibrations of bridge groups O-P-O are divided into two groups according to their bond length. The crystal structure of the complex boa been determined from single crystal K-ray diffraction data. The crystals belong to monoclinic system, space group P2(1)/c with cell parameteras, a = 1,0704(4), b = 0.5093(2), c = 1.9737(6)nm, beta = 96.23(3)degrees, V = 1.0696(6)nm(2), Z = 4, final R = 0.044. Copper ion is coordinated to five Rimester oxygen atoms to form a distorted square pyramid. The adjacent copper ions are connected by symmetric and non-symmetric bridge groups of O-P-O, forming an infinite one-dimensional chain coordination polymer.
Resumo:
The crystal structure of the title compound was determined from single crystal X-ray diffraction at -90-degrees-C. The complex crystallizes in the tetragonal P4/mnc, Z = 2, a = 12.515(3), c = 17.636(7) angstrom. The structure was solved by Patterson and Fourier techniques and refined by least-squares to R = 0.061 for 788 reflections. The central PO4 is disordered, P-O = 1.54 angstrom, M(M = Mo or V) is 6-coordinate, M-O = 1.62-2.48 angstrom, K is 7-coordinate, K-O = 2.84-3.10 angstrom.
Resumo:
The tetranuclear nearly-linear complex (eta-8-C8H8)Er(mu-eta-8-C8H8)K(mu-eta-8-C8H8)Er(mu-eta-8-C8H8)K(THF)4 (THF = tetrahydrofuran) is first synthesised by the reaction of benzylcyclopentadienyl erbium dichloride (PhCH2C5H4)ErCl2.3THF with cyclooctatetraenyl potassium K2C8H8 in 1:1 molar ratio in THF; a single crystal X-ray study has shown that the complex has the tetralayer-sandwich structure and that the adjacent Er3+ and K+ ions are bridged by eta-8-cyclooctatetraenyl group.
Resumo:
The reaction between LaCl_3 and LiCl in THF at room temperature, with hexane as precipitant and glycol dimethyl ether as complexing agent, has been studied. A complex with the composition of (LaCl)DME(μ_2-Cl)_5(μ_3-Cl)(La·DME)Li(THF)_2 has been synthesized, its structure was studied by single crystal X-ray diffraction technique. The diffraction intensities were collected at about —100℃. The complex belongs to the triclinic space group P1 with α=11.123(3), 6=16.564(5), c=8.653(3)A, α=95.16(3), β=...
Resumo:
the novel One-dimensional chain structure of the title cluster compound was synthesized and characterized by elemental analysis, IR spectra, TGA and X-ray single-crystal diffraction. The title cluster compound crystallized in a monochnic system with space group C2/c, a = 1.2656 nm, b = 2.20656 (4) nm, c =2.26763 (4) nm, beta = 92.078 degrees, V = 6.32852 (16) nm(3), Z = 4, D-c = 3.801 g/cm(3), A = 2.271 mm(-1), F(000) = 6512, R-1= 0.0549, wR(2) = 0.1087. The structure building block of the structure is the polyanion [SiW12O40](6-) with alpha-Keggin structure. The clusters were linked together with one-dimensional infinite chain through [ Ni ( enMe) (2)] (2+) cations. The [ Ni ( enMe) (2) ( H2O) (2)] (2+) cations and water molecules were filled in the structure. The cluster compound was expanded to three-dimensional framework by hydrogen bond interactions among molecules.
Resumo:
A novel triazole derivative 4-(2-hydrobenzylideneamino)-3-(1, 2, 4-triazol-4-ylmethyl)-1H-1, 2, 4-triazole-5 (4H)-thione(1) was synthesized and characterized using elemental analysis, MR, and H-1 NMR, and its crystal structure was determined via X-ray single crystal diffraction analysis. Crystal data: monoclinic, P2 (1)/c, a = 0.83335 (9) nm, b = 1. 49777 (16) run, c = 1. 14724 (12) nm, beta = 107. 990 (2)degrees, D = 1. 470 Mg/m(3), and Z = 4. The geometries and the vibrational frequencies were determined using the density functional theory(DFT) method at the B3LYP/6-31G* level. To demonstrate the accuracy of the reaction route of compound 1, one of the important intermediates was also tested using the same method. The structural parameters of the two compounds calculated using the DFT study are close to those of the crystals, and the harmonic vibrations of the two compounds computed via the DFT method are in good agreement with those in the observed IR spectral data. The thermodynamic properties of the title compound were calculated, and the compound shows a good structural stability at normal temperature. The test results of biological activities show that it has a certain bactericidal ability.