67 resultados para Quasi-nilpotent
Resumo:
The rising time of the excitonic luminescence in GaAs/AlGaAs quantum wells is studied as a function of the well width. For well thickness below approximately 20 Angstrom, we find an increase of rising time with decreasing well width. We explain the dependence of the rising time on well width in very thin quantum wells by the slow-down energy relaxation and/or exciton migration processes due to the decrease of the scattering rate of the exciton-acoustic-phonon interaction. (C) 1996 American Institute of Physics.
Resumo:
A semiconductor optical amplifier gate based on tensile-strained quasi-bulk InGaAs is developed. At injection current of 80mA,a 3dB optical bandwidth of more than 85nm is achieved due to dominant band-filling effect.Moreover, the most important is that very low polarization dependence of gain (<0. 7dB),fiber-to-fiber lossless operation current (70~90mA) and a high extinction ratio (>50dB) are simultaneously obtained over this wide 3dB optical bandwidth (1520~1609nm) which nearly covers the spectral region of the whole C band (1525~1565nm)and the whole L band (1570~ 1610nm). The gating time is also improved by decreasing carrier lifetime. The wideband polarization-insensitive SOA-gate is promising for use in future dense wavelength division multiplexing (DWDM) communication systems.
Resumo:
A fitting process is used to measure the cavity loss and the quasi-Fermi-level separation for Fabry- Perot semiconductor lasers. From the amplified spontaneous emission (ASE) spectrum, the gain spectrum and single-pass ASE obtained by the Cassidy method are applied in the fitting process. For a 1550nm quantum well InGaAsP ridge waveguide laser, the cavity loss of about ~24cm~(-1) is obtained.
Resumo:
国家自然科学基金
Resumo:
国家863计划,国家自然科学基金
Resumo:
国家863计划,国家自然科学基金
Resumo:
In this paper, the mechanism of detonation to quasi-detonation transition was discussed, a new physical model to simulate quasi-detonation was proposed, and one-dimensional theoretical and numerical simulation was conducted. This study firstly demonstrates that the quasi-detonation is of thermal choking. If the conditions of thermal choking are created by some disturbances, the supersonic flow is then unable to accept additional thermal energy, and the CJ detonation becomes the unstable quasi-detonation precipitately. The kinetic energy loss caused by this transition process is firstly considered in this new physical model. The numerical results are in good agreement with previous experimental observations qualitatively, which demonstrates that the quasi-detonation model is physically correct and the study are fundamentally important for detonation and supersonic combustion research.
Resumo:
Osteocytes respond to dynamic fluid shear loading by activating various biochemical pathways, mediating a dynamic process of bone formation and resorption. Whole-cell deformation and regional deformation of the cytoskeleton may be able to directly regulate this process. Attempts to image cellular deformation by conventional microscopy techniques have been hindered by low temporal or spatial resolution. In this study, we developed a quasi-three-dimensional microscopy technique that enabled us to simultaneously visualize an osteocyte's traditional bottom-view profile and a side-view profile at high temporal resolution. Quantitative analysis of the plasma membrane and either the intracellular actin or microtubule (MT) cytoskeletal networks provided characterization of their deformations over time. Although no volumetric dilatation of the whole cell was observed under flow, both the actin and MT networks experienced primarily tensile strains in all measured strain components. Regional heterogeneity in the strain field of normal strains was observed in the actin networks, especially in the leading edge to flow, but not in the MT networks. In contrast, side-view shear strains exhibited similar subcellular distribution patterns in both networks. Disruption of MT networks caused actin normal strains to decrease, whereas actin disruption had little effect on the MT network strains, highlighting the networks' mechanical interactions in osteocytes.
Resumo:
Differential cross sections for the quasi-elastic scattering of C-16 at 47.5 MeV/nucleon from C-12 target are measured. Coupled-channels calculations are carried out and the optical potential parameters are obtained by fitting the experimental angular distribution.