463 resultados para Phosphorescence excitation spectra
Resumo:
A simple technique for preparation of powder binary fluorides activated with divalent samarium ions is described. The samarium impurity is introduced as samarium trifluoride SmF3 and hydrogen acts as the reducing agent to transform Sm3+ into Sm2+. Using this method, samarium has been stabilized in the divalent state in some fluorides: KMgF3, LiBaF3, BaBeF4, SrMgF4 and BaMgF4. Moreover, BaBeF4, SrMgF4 and BaMgF4 have never been activated with Sm2+ ions up to now. We also find that under the same synthetic conditions samarium can not be stabilized in the divalent state in some fluorides: KCaF3, CaBeF4 and CaMgF4, but the characteristic luminescence of trivalent samarium Sm3+ appears in these matrices. The emission and excitation spectra of samarium (Sm2+ and Sm3+) in these binary fluorides are presented and briefly discussed. The relationship between the oxidation state of samarium and the composition, the structure of matrices is also analyzed.
Resumo:
With increasing excitation wavelength from 514 to 782 mn, a significant difference in the Raman spectra of SIC nanorods was observed as compared to bulk material. The intensity ratio of the LO mode to that of the IF mode increases with the excitation wavelength increasing. This has been identified as resonant Raman scattering caused by Frohlich interaction.
Resumo:
Phosphate long lasting phosphorescence (LLP) phosphors with composition of (Zn1-xTmx)(2)P2O7 were prepared by the high-temperature solid-state method. Their properties were systematically investigated utilizing XRD, photoluminescence, phosphorescence and thermoluminescence (TL) spectra. These phosphors emit blue light that is related to the characteristic emission due to the D-1(2)-H-3(6), D-1(2)-H-3(4) and (1)G(4)-H-3(6) transitions of Tm3+. After the UV light excitation source was switched off, the bright blue long lasting phosphorescence can be observed which could last for more than 1 h in the limit of light perception of dark-adapted human eyes (0.32 mcd/m(2)). Two TL peaks at 336 K and 415 K appeared in the TL spectrum. By analyzing the TL curve the depths of traps were calculated to be 0.67 eV and 0.97 eV, respectively.Also, the mechanism was discussed in this report.
Resumo:
A new method for measuring the density, temperature and velocity of N2 gas flow by laser induced biacetyl phosphorescence is proposed. The characteristics of the laser induced phosphorescence of biacetyl mixed with N2 are investigated both in static gas and in one-dimensional flow along a pipe with constant cross section. The theoretical and experimental investigations show that the temperature and density of N2 gas flow could be measured by observing the phosphorescence lifetime and initial intensity of biacetyl triplet (3Au) respectively. The velocity could be measured by observing the time-of-flight of the phosphorescent gas after pulsed laser excitation. The prospect of this method is also discussed.
Resumo:
A V:YAG single crystal was grown by the temperature gradient technique (TGT) with graphite-heating elements. The as-grown crystal has different colorations of light green and yellow brown in different parts. Distribution of vanadium in three samples with different colorations was determined by inductively coupled plasma-mass spectrometry. From the absorption spectrum of the yellow-brown part with peaks at 370, 820 and 1320nm, we can deduce that the reducing atmosphere of carbon diffused from the heating elements can increase the concentration of tetrahedral V3+ ions and induce F color centers. All three samples exhibited light-green color after annealing in vacuum or H-2 atmospheres. In the vacuum annealing process, the V3+ ions in tetrahedral positions were enhanced through two methods: one method is the exchanging of octahedral V3+ and tetrahedral Al3+ ions in neighboring sites under thermal excitation, the other is that F color centers were thoroughly eliminated and the escaped free electrons could be captured by V ions with higher valance states to further improve the concentration of tetrahedral V3+ ions. Besides the two mechanisms, the H-2 annealing process greatly improved the V-tetra(3+) ions through the reduction effect of H-2. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this work, The TBS glass microspheres doped with Er3+ for morphology-dependent resonances of upconversion emission were designed. The glass sample components are 25TiO(2)-27BaCO(3)-8Ba(NO3)(2)-6ZnO(2)-9CaCO(3)-5H(3)BO(3)-10SiO(2)-7water glass-3Er(2)O(3) (wt%), and the emission spectra of TBS glass and a TBS glass microsphere (about 48 mum in diameter) were measured under 633 nm excitation and discussed. The strong morphology-dependent resonances of upconversion luminescences in the microsphere were observed. The observed resonances could be assigned by using the well-known Lorenz-Mie Formalism. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Under short pulse laser excitation, we have observed an extra high-energy photoluminescence (PL) emission from GaNAs/GaAs single quantum wells (QWs). It dominates the PL spectra under high excitation and/or at high temperature. By measuring the PL dependence on both temperature and excitation power and by analyzing the time-resolved PL results, we have attributed the PL peak to the recombination of delocalized excitons in QWs. Furthermore, a competition process between localized and delocalized excitons is observed in the temperature-dependent PL spectra under the short pulse excitation. This competition is believed to be responsible for the temperature-induced S-shaped PL shift often observed in the disordered alloy semiconductor system under continuous-wave excitation. (C) 2001 American Institute of Physics.
Resumo:
We have investigated the temperature and excitation power dependence of photoluminescence properties of InAs self-assembled quantum dots grown between two Al0.5Ga0.5As quantum wells. The temperature evolutions of the lower-and higher-energy transition in the photoluminescence spectra have been observed. The striking result is that a higher-energy peak appears at 105 K and its relative intensity increases with temperature in the 105-291 K range. We demonstrate that the higher-energy peak corresponds to the excited-state transition involving the bound-electron state of quantum dots and the two-dimensional hole continuum of wetting layer. At higher temperature, the carrier transition associated with the wetting layer dominates the photoluminescence spectra. A thermalization model is given to explain the process of hole thermal transfer between wetting layer and quantum dots. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
In this work, The TBS glass microspheres doped with Er3+ for morphology-dependent resonances of upconversion emission were designed. The glass sample components are 25TiO(2)-27BaCO(3)-8Ba(NO3)(2)-6ZnO(2)-9CaCO(3)-5H(3)BO(3)-10SiO(2)-7water glass-3Er(2)O(3) (wt%), and the emission spectra of TBS glass and a TBS glass microsphere (about 48 mum in diameter) were measured under 633 nm excitation and discussed. The strong morphology-dependent resonances of upconversion luminescences in the microsphere were observed. The observed resonances could be assigned by using the well-known Lorenz-Mie Formalism. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Cross sections for electron impact excitation of lithium from the ground state 1s(2)2s to the excited states 1s2s(2), 1s2p(2), 1s2snp (n = 2-5), 1s2sns (n = 3-5), 1s2pns (n = 3-5), and 1s2pnp (n = 3-5) are calculated by using a full relativistic distorted wave method. The latest experimental electron energy loss spectra for inner-shell electron excitations of lithium at a given incident electron energy of 2500 eV [Chin. Phys. Lett. 25 (2008) 3649] have been reproduced by the present theoretical investigation excellently. At the same time, the structures of electron energy loss spectra of lithium at low incident electron energy are also predicted theoretically, it is found that the electron energy loss spectra in the energy region of 55-57 eV show two-peak structures.
Resumo:
The X-ray spectra of Nb surface induced by Arq+ (q = 16,17) ions with the energy range from 10 to 20 keV/q were studied by the optical spectrum technology. The experimental results indicate that the multi-electron excitation occurred as a highly charged Ar16+ ion was neutralized below the metal surface. The K shell electron of Ar16+ was excited and then de-excited cascadly to emit K X-ray. The intensity of the X-ray emitted from K shell of the hollow Ar atom decreased with the increase of projectile kinetic energy. The intensity of the X-ray emitted from L shell of the target atom Nb increased with the increase of projectile kinetic energy. The X-ray yield of Ar17+ is three magnitude orders larger than that of Ar16+.
Resumo:
The 10-20 qkeV Ar16+ and Ar17+ ions produced by SECRAL enter on metallic surface of Zr. In this interaction, the multi-electron excitation possibly occurred in the neutralization of the highly charged Ar16+ ions, which produced vacancy in the K shell. Electron of the high n state de-excited to K vacancy gives off X-ray. The experimental results show that X-ray intensities for the Ar hollow atom decrease with increase of incidence energy, and L beta X-ray intensities of target atom Zr increase with increasing incidence energy. K alpha X-ray yield per ion for Ar17+ was five orders of magnitude greater than that for Ar16+
Resumo:
By use of optical spectrum technology, the spectra of X-ray induced by highly charged Ar-40(q+) ions interacting with Au surface have been studied. The results show that the argon K alpha X-ray were emitted from the hollow atoms formed below the surface. There is a process of multi-electron exciting in neutralization of the Ar16+ ion, with electronic configuration 1s(2) in its ground state below the solid surface. The yield of the projectile K alpha X-ray is related to its initial electronic configuration, and the yield of the target X-ray is related to the projectile kinetic energy.
Resumo:
Spectra for Delta n = 0 transitions of the type 2s(2)2p(k)-2s2p(k+1) or 2s2p(k)-2p(k+1) from highly ionized sulfur produced in beam-foil excitation are investigated and compared to similar spectra measured with other types of light sources. In the experiment, fifty lines have been identified, of which eleven lines are new and accurately measured. Analysis of spectra was based on comparisons with other experimental results and calculated values.
Resumo:
The electron impact excitation (EIE) cross sections from the ground state to all of the 2s(2)2p(5)3l and 2s2p(6)3l(l=s, p, d) states along the Ne-like isoelectronic sequence of ions (Z = 50-57) have been calculated by using the multiconfiguration Dirac-Fock package GRASP92 and the fully relativistic distorted-wave program REIE06. In the calculations, the relativistic effects and electron correlation effects are considered systematically. Based on those calculations, the EIE cross sections along the Ne-like isoelectronic sequence of ions for different incident electron energies are discussed, and some important conclusions are drawn. We also study the influence of the correlation effects on the values of the 3C/3D line-intensity ratio [3C: (2p(1/2)3d(3/2))(1) -> 2s(2)2p(6) S-1(0), 3D: (2p(3/2)3d(5/2))(1) -> 2s(2)2p(6) S-1(0)] along the Ne-like sequence. A comparison is made between the present results and previous theoretical calculations and experimental results for the EIE cross sections in Ba-46 (+) ions, and a good agreement is obtained.