125 resultados para Packed beds
Resumo:
ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precursor, respectively. The effects of the growth temperatures on the growth characteristics and optical properties of ZnO films were investigated. The X-ray diffraction measurement (XRD) results indicated that all the thin films were grown with highly c- axis orientation. The surface morphologies and crystal properties of the films were critically dependent on the growth temperatures. Although there was no evidence of epitaxial growth, the scanning electron microscopy (SEM) image of ZnO film grown at 400℃ revealed the presence of ZnO microcrystallines with closed packed hexagon structure. The photoluminescence spectrum at room temperature showed only bright band-edge (3. 33eV) emissions with little or no deep-level e- mission related to defects.
Resumo:
Controlled vertical drying deposition method was used to make high-quality single crystal close-packed colloidal films formed of different radii polystyrene latex spheres on glass substrates coming from a low concentration water suspension (0.1% volume fraction). Regardless of the spheres radii the film thickness was about 6.3 microns. However, cracks destroyed the crystalline film structure during the colloidal film growth. The effect of particle radius (85-215 nm range) on film cracking was systematically studied using in situ optical fracture monitoring. Primary parallel cracks run along the vertical growth direction, later followed by secondary branched cracks in-between the primary cracks due to residual water evaporation. Quantitative theoretical relationship between the cracks spacing and particles radius was derived and shows good agreement with experimental observations. Normalized cracks spacing is related to a reciprocal ratio of the dimensionless particle radius.
Resumo:
A method involving self-concentration, on-column enrichment and field-amplified sample stacking for on-line concentration in capillary electrochromatography with a polymer monolithic column is presented. Since monolithic columns eliminate the frit fabrication and the problems associated with frits, the experimental conditions could be more flexibly adjusted to obtain higher concentration factor in comparison with conventional particulate packed columns. With self-concentration effect, the detection sensitivity of benzene and hexylbenzene is improved by a factor of 4 and 8, respectively. With on-column enrichment and ultralong injection, improvement as high as 22 000 times in detection sensitivity of benzoin is achieved. Furthermore, a combination of the three above-mentioned methods yields up to a 24000-fold improvement in detection sensitivity for caffeine, a charged compound. Parameters affecting the efficiency of on-line concentration are investigated systematically. In addition, equations describing on-line concentration process are deduced.
Resumo:
The dynamic flow profiles and separation performances in conically shaped preparative liquid chromatographic columns (inlet i.d. larger than outlet i.d.) with three different angles (7, 10 and 15degrees) were studied and compared with cylindrical column of the same length and internal volume. The shapes of dynamic flow profiles were studied by on-column visualization method. The transparent chromatographic columns made of polymethyl methacrylate (PMMA), packed with C-18 bonded silica, were immerged into a cubic pool filled with glycerol to eliminate the cylindrical and conical lens effect. The flow profiles of colored iodine solution in the columns were observed clearly using cyclohexane as mobile phase since the refractive indices of C-18, column wall and the mobile phase are very close. In the conical column of 15degrees (20-7 mm i.d.) the mobile phase in the central region migrated slower than in wall region as it moved toward the column outlet, while in the conical column of 7degrees (17-11 mm i.d.) the mobile phase in the central region migrated faster than in wall region just like in cylindrical column. We found that a plug-like flow profile was generated in the conical column of 10degrees (18-9 mm i.d.) during the whole migration process. A carmine and brilliant blue mixture was used as a probe to test the separation ability of the columns. The resolutions of the two compounds on the conical column of 7, 10, 15degrees and on the cylindrical column were 0.6, 1.57, 1.29 and 0.8, respectively. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A packed-bed electroosmotic pump (EOP) was constructed and evaluated. The EOP consisted of three capillary columns packed in parallel, a gas-releasing device, Pt electrodes and a high-voltage power supply. The EOP could generate output pressure above 5.0 MPa and constant flow rate in the range of nl/min to a few mul/min for pure water, pure methanol, 2 mM potassium dihydrogenphosphate buffer, the buffer-methanol mixture and the pure water-methanol mixture at applied potentials less than 20 W The composition of solvent before/after pumping was quantitatively determined by using a gas chromatograph equipped with both flame ionization detector and thermal conductivity detector. It was found that there were no apparent changes in composition and relative concentrations after pumping process for a methanol-ethanol-acetonitrile mixture and a methanol-water mixture. Theoretical aspect of the EOP was discussed in detail. An capillary HPLC system consisting of the EOP, an injection valve, a 15 cm x 320 mum i.d., 5 mum Spherigel C(18) stainless steel analytical column, and an on-column UV detector was connected to evaluate the performance of the EOP. A comparative study was also carried out with a mechanical capillary HPLC pump on the same system. The results demonstrated that the reproducibility of flow rate and the pulsation-free flow property of the EOP are superior to that of mechanical pump in capillary HPLC application. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Methyl radicals are generated by pyrolysis of azomethane, and the condition for achieving neat adsorption on Cu(110) is described for studying their chemisorption and reaction characteristics. The radical-surface system is examined by X-ray photoemission spectroscopy, ultraviolet photoemission spectroscopy, temperature-programmed desorption, low-energy electron diffraction (LEED), and high-resolution electron energy loss spectroscopy under ultrahigh vacuum conditions. It is observed that a small fraction of impinging CH3 radicals decompose into methylene possibly on surface defect sites. This type of CH2 radical has no apparent effect on CH3(ads) surface chemistry initiated by dehydrogenation to form active CH2(ads) followed by chain reactions to yield high-mass alkyl products. All thermal desorption products, such as H-2, CH4, C2H4, C2H6, and C3H6, are detected with a single desorption peak near 475 K. The product yields increase with surface coverage until saturation corresponding to 0.50 monolayer of CH3(ads). The mass distribution is, however, invariant with initial CH3(ads) coverage, and all desorbed species exhibit first-order reaction kinetics. LEED measurement reveals a c(2 x 2) adsorbate structure independent of the amount of gaseous exposure. This strongly suggests that the radicals aggregate into close-packed two-dimensional islands at any exposure. The islanding behavior can be correlated with the reaction kinetics and is deemed to be essential for the chain propagation reactions. Some relevant aspects of the CH3/Cu(111) system are also presented. The new results are compared with those of prior studies employing methyl halides as radical sources. Major differences are found in the product distribution and desorption kinetics, and these are attributed to the influence of surface halogen atoms present in those earlier investigations.
Resumo:
The dynamic flow profiles and column efficiencies in conically shaped semi-preparative liquid chromatographic columns (inlet ID larger than outlet ID) with two different conical angles (7degrees and 15degrees) were studied. The dynamic flow profiles were studied by an on-column visualization method. Conical columns were compared with cylindrical column of the same length and internal volume. The results showed that the flow profile of a sample band in the conical column of 7degrees (50 mm x 17 mm --> 11 mm ID) was parabolic in shape. The sample band migrated slower in the wall region than in the central region, as in the cylindrical column (50 mm x 14 mm ID). However, the sample band in the conical column of 15degrees (50 mm x 20 mm --> 7 mm ID) migrated slower in the central region than in the wall region, resulting in a reverse parabolic flow profile, in contrast to that in cylindrical column. This indicated that a flat flow profile might be realized in a conical column with a conical angle between 7degrees and 15degrees. The conical column of 15degrees had the highest column efficiency among the three columns under the same conditions. Compared with the cylindrical column packed with identical packing material, the conical column of 15degrees had 22%-45% higher column efficiency and 11%-27% higher peak height.