160 resultados para PERPENDICULAR ANISOTROPY
Resumo:
The electronic state of a two-dimensional electron system (2DES) in the presence of a perpendicular uniform magnetic field and a lateral superlattice (LS) is investigated theoretically. A comparative study is made between a LS induced by a spatial electrostatic potential modulation (referred to as a PMLS) and that induced by a spatial magnetic-field modulation (referred ro asa MMLS). By utilizing a finite-temperature self-consistent Hartree-Fock approximation scheme; the dependence of the electronic state on different system parameters (e.g., the modulation period, the modulation strength, the effective electron-electron interaction strength, the averaged electron density, and the system temperature) is studied in detail. The inclusion of exchange effect is found to bring qualitative changes to the electronic state of a PMLS, leading generally to a nonuniform spin splitting, and consequently the behavior of the electronic state becomes similar to that of a MMLS. The Landau-level coupling is taken into account, and is found to introduce some interesting features not observed before. It is also found that, even in the regime of intermediate modulation strength, the density dependence of the spin splitting of energy levels, either for a PMLS or a MMLS, can be qualitatively understood within the picture of a 2DES in a perpendicular magnetic field with the modulation viewed as a perturbation. [S0163-1829(97)02248-0].
Resumo:
In-plane optical anisotropy which comes from the heavy hole and the light hole transitions in an InAs monolayer inserted in (311)-oriented GaAs matrix is observed by reflectance difference spectroscopy. The observed steplike density of states demonstrates that the InAs layer behaves like a two-dimensional quantum well rather than isolated quantum dots. The magnitude of the anisotropy is in good agreement with the intrinsic anisotropy of (311) orientation quantum wells, indicating that there is little structural or strain anisotropy of the InAs layer grown on (311)-oriented GaAs surface.
Resumo:
The interface properties of GaNxAs1-x/GaAs single-quantum well is investigated at 80 K by reflectance difference spectroscopy. Strong in-plane optical anisotropies (IPOA) are observed. Numerical calculations based on a 4 band K . P Hamiltonian are performed to analyze the origin of the optical anisotropy. It is found that the IPOA can be mainly attributed to anisotropic strain effect, which increases with the concentration of nitrogen. The origin of the strain component epsilon(xy) is also discussed.
Resumo:
We investigate the photoinduced anisotropy of a photochromic material of pyrrylfulgide/PMMA films. It is proven that when the film is illuminated with a linear polarization light, an optical axis that has the same polarization as the excitation light could be induced in the film. A matrix of light spots with different polarizations is recorded on the pyrrylfulgide/PMMA film. When reading out with non-polarization light, the matrix of light spots shows no information of patterns. However, when reading out with different linear polarization lights, different patterns could be observed. The experiment confirms that the pyrrylfulgide/PMMA film could be used to record two different polarization patterns in a matrix of spots. This property may be applied in camouflage technology.
Resumo:
A synthesized photochromic compound-pyrrylfulgide-is prepared as a thin film doped in a polymethylmethacrylate (PMMA) matrix. Under irradiation by UV light, the film converts from the bleached state into a colored state that has a maximum absorption at 635 nm and is thermally stable at room temperature. When the colored state is irradiated by a linearly polarized 650 nm laser, the film returns to the bleached state; photoinduced anisotropy is produced during this process. Application of optical image processing methods using the photoinduced anisotropy of the pyrrylfulgide/PMMA film is described. Examples in non-Fourier optical image processing, such as contrast reversal and image subtraction and summation, as well as in Fourier optical image processing, such as low-pass filtering and edge enhancement, are presented. (c) 2006 Optical Society of America.
Resumo:
Photoinduced anisotropy of a photochromic pyrrylfulgide/PMMA film was investigated by using two linearly polarized beams. Excitation by linearly polarized light induces into the film an optical axis that has the same polarization as the excitation beam. This causes a change of the transmittance and of the polarization state of the detection beam. With a microscope a matrix of 4x4 light spots with different polarizations were recorded in the pyrrylfulgide/PMMA film. If readout with non-polarized light, the matrix of light spots show no information pattern. However, when readout with differently polarized lights, different patterns can be displayed. The experiment demonstrates that pyrrylfulgide/PMMA films can be used to hide two differently polarized patterns, which may be applied in camouflage technology. (C) 2005 Optical Society of America.
Resumo:
Based on the theoretical model we have proposed, a complete study on the kinetics of photoincluced anisotropy in diarylethene films is performed. The kinetic curves of molecular concentration, photoincluced dichroism and birefringence are calculated, respectively. It is found that the colored molecular concentration decreases with the increase of the excitation exposure until saturation, and the photoincluced anisotropy increases to a maximum and then decreases gradually. The optimal exposure is 260 J/cm(2). In addition, the transmittance of probe beam reflecting the anisotropy is measured by experiment. The theoretical results are compared with experimental data, and basic concordance is found between both sets of data. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The dielectric response of a modulated three-dimensional electron system composed of a periodic array of quantum wells with weak coupling and strong coupling are studied, and the dispersions of the collective excitations and the single particle excitations as functions of wave vectors are given. It is found that for the nearly isolated multiple-quantum-well case with several subbands occupation, there is a three-dimensional-like plasmon when q(z)=0 (q(z) is the wave-vector component in the superlattice axis). There also exist intersubband collective excitations in addition to one intra-subband mode when q(z) not equal 0. The intra-subband mode has a linear dispersion relation with q(//) (the wave-vector component perpendicular to the superlattice axis) when q(//) is small. The inter-subband modes cover wider ranges in q(//) with increasing values of q(z). The energies of inter-subband collective excitations are close by the corresponding inter-subband single-particle excitation spectra. The collective excitation dispersions show obvious anisotropy in the 2D quantum limit. The calculated results agree with the experiment. The coupling between quantum wells affects markedly both the collective excitations and the single particle excitations spectra. The system shows gradually a near-three-dimensional electron gas character with increasing coupling. Copyright (C) 1996 Published by Elsevier Science Ltd
Resumo:
The reduction of exciton binding energy induced by a perpendicular electric field in a stepped quantum well is studied. From continuous-wave photoluminescence spectra at 77 K we have observed an obvious blueshift of the exciton peak due to a spatially direct-to-indirect transition of excitons. A simple method is used to calculate the exciton binding energy while the inhomogeneous broadening is taken into account in a simple manner. The calculated result reproduces remarkably well the experimental observation.
Resumo:
It is rigorously proved that the Green's function of a uniform two-dimensional interacting electron gas in a perpendicular magnetic field is diagonal with respect to single-particle states in the Landau gauge. The implication of this theorem is briefly discussed.
Resumo:
We experimentally study the effect of perpendicular electric field on the exciton binding energy using a specially designed step quantum well. From photoluminescence spectra at the temperature of 77 K, we have directly observed remarkable blueshift of the exciton peak due to the transition from spatially direct to spatially indirect excitons induced by electric field. (C) 1995 American Institute of Physics.