119 resultados para Oxidative dissolution
Resumo:
We report a simple fluorescent method for sensitive cyanide detection based on the dissolution of Rhodamine B-adsorbed gold nanoparticles by cyanide.
Resumo:
In this work, we studied the reaction between Au nanoparticles (Au NPs) and [Fe(CN)(6)](3-) by the UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy. The absorption peak of Au NPs disappeared after adding [Fe(CN)(6)](3-) and the XPS data conformed the formation of [Au(CN)(2)](-). The results demonstrated that [Fe(CN)(6)](3-) could induce the dissolution of Au NPs, where the CN- from the dissociation of [Fe(CN)(6)](3-) played an important role.
Resumo:
convenient and efficient synthesis of spiro-fused pyrazolin-5-one N-oxides starting from readily available 1-carbamoyl-1-oximylcycloalkanes is developed. This general protocol features a novel and facile way for access to the five-membered azaheterocycles by formation of a new N-N single bond. The key cyclization step utilizes the formation of an N-oxonitrenium intermediate, mediated by the hypervalent iodine reagent PIFA, and its subsequent intramolecular trapping by the amide moiety under rather mild experimental conditions.
Resumo:
A simple method to disperse carbon nanotubes (CNTs) has been achieved, which gives two photofunctionalized CNTs, hydrazine nanotubes (h-CNTs) and 1,3,4-oxadiazole nanotubes (o-CNTs). Results from FTIR, H-1 NMR spectroscopy and TEM observations showed that the functionalization was successful. The modified nanombes can dissolve in most of the nonpolar organic solvents and no precipitate was observed in the solution of the nanombes even after 2 months. The functionalized nanotubes showed photo-electronic properties, which is due to the attachment of the function groups to them as proved by steady-state fluorescence spectroscopy. Both h-CNTs and o-CNTs showed good thermal stability below 300 C and might be used as functional materials.
Resumo:
The product selectivity can be controlled by adding acetic acid in feed over vanadium phosphate (VPO) in gas phase oxidative dehydrogenation (ODH), in which cyclohexane and cyclohexene are oxidized to cyclohexene and 1,3-cyclohexadiene (1,3-CHD), respectively, at almost 100% selectivity. This approach is also an efficient method to capture the very unstable intermediates in the mechanism study.
Resumo:
alpha(1)-VOPO4, alpha(II)-VOPO4 and beta-VOPO4 have been investigated as catalysts for the gas phase oxidative dehydrogenation (ODH) of cyclohexane to cyclohexene with the addition of acetic acid (HOAc) in the feeds in a fixed bed reactor. Different VOPO4 phases showed different acidity and reducibility. beta-VOPO4 phase is more active than alpha(I)-VOPO4 and alpha(II)-VOPO4 in the ODH without acetic acid addition. In the presence of acetic acid, the acidity of the catalyst may play an important role in the ODH process. Due to higher acidity, alpha(I)-VOPO4 phase catalyst gives better catalytic performances than alpha(I)-VOPO4 and beta-VOPO4 for the ODH of cyclohexane by adding of acetic acid in the reactants.
Resumo:
The effect of adding acetic acid on the product distribution in gas phase oxidative dehydrogenation of cyclohexane over alpha(1)-VOPO4 catalyst was investigated. The role of acetic acid in the reaction process was put forward. The proposed mechanism is that acetic acid take precedence of cyclohexane adsorbing on the active sites of alpha(1)-VOPO4 catalyst to form isolated active site. Thus, cyclohexene species can desorb quickly from the active sites, avoiding its deep oxidation dehydrogenation. Almost 100% selectivity to cyclohexene could be obtained when the molar ratio of acetic acid to cyclohexane was 12.9:1 at 450 degrees C, the conversion of cyclohexane was 6.9%.
Resumo:
The target DNA was immobilized successfully on gold colloid particles associated with a cysteamine monolayer on gold electrode surface. Self-assembly of colloidal An onto a cysteamine modified gold electrode can enlarge the electrode surface area and enhance greatly the amount of immobilized single stranded DNA (ssDNA). The electrontransfer processes of [Fe(CN)(6)](4)-/[Fe(CN)(6)](3-) on the gold surface were blocked due to the procedures of the target DNA immobilization, which was investigated by impedance spectroscopy. Then single stranded target DNA immobilized on the gold electrode hybridized with the silver nanoparticle-oligonucleotide DNA probe, followed by the release of the silver metal atoms anchored on the hybrids by oxidative metal dissolution, and the indirect determination of the released solubilized Ag-1 ions by anodic stripping voltammetry (ASV) at a carbon fiber microelectrode. The results show that this method has good correlation for DNA detection in the range of 10-800 pmol/1 and allows the detection level as low as 5 pmol/1 of the target oligonucleotides.
Resumo:
By [2 + 2] Schiff base condensation of 5 - bromo - 2 - methoxylbenzene - 1,3 - dicarboxaldehyde with diethylenetriamine, a new hexaaza 24 - membered macrocyclic ligand was obtained,which formed a macrocyclic binuclear copper(I) complex in the presence of [Cu . (CH3CN)(4)]ClO4. When the copper(I) complex was oxidized in air or oxygen, a new macrocyclic binuclear copper( II) complex was obtained. The copper( II.) complex was characterized by several methods and its oxidized products was characterized by H-1 NMR. The results show that during oxidation, a methoxyl group in the ligand ring broke; and the phenoxy - and water - bridged Cu(II) complex formed. In oxidation of monooxygenase such as ligninase, oxidative demethylation also happened. Therefore this work mimicked this process for the first time by using macrocyclic complex. The quantity of absorbed oxygen and the absorption rate of oxygen were determined.
Resumo:
The microphase transition in a styrene-butadiene-styrene triblock copolymer was studied by rheometric mechanical spectroscopy. A high-temperature-melt rheological transition from the highly elastic, nonlinear viscous behavior typical of a multiphase structure to linear viscous behavior with insignificant elasticity typical of a single-phase structure was observed. The transition temperature is determined according to the discontinuity of the rheological properties across the transition region, which agrees well with the results obtained from the small angle X-ray scattering data and the expectation of the random phase approximation theory. Maybe for the first time, microphase dissolution was investigated theologically. The storage modulus (G') and the loss modulus (G '') increase with time during the process. An entanglement fluctuation model based on the segmental density fluctuations is presented to explain the rheological behavior in this dissolution process. (C) 1997 John Wiley & Sons.
Resumo:
The dissolution behaviours of La and Nd in their chloride molten salts were studied by means of the see-through cell, electrochemical weak polarization and quantum chemistry (extended Huckel molecular orbital). The reasons for the low current efficiencies of rare earth metals and the difference between La and Nd in their own chloride electrolytes on the basis of the solubility, rate of dissolution, and existing state of the metals dissolved as well as the structure of the melts, are discussed.
Resumo:
The correlations of the calcination temperature, structure and catalytic activity for the oxidative coupling of methane on the LiLa0.5Ti0.5O2+lambda catalysts whose main phase and major active phase is Perovskite-type ternary complex oxide LaTi1-yLiyO3-lambda have been studied. The surface and bulk structures of the catalysts were characterized by means of XRD, XPS, IR, BET and so on, The results cleary indicated that the effect of calcination temperature on the activity for the oxidative coupling of methane is twofold. On one hand, it is favorable for Li+ substitution for Ti3+ to enter into the lattice of LaTiO3 and produce more oxygen vacancies in which active oxygens are formed; however, excessively high calcination temperature make the amount of Li+ substitution for Ti3+ lower, due to a little change of structure or phases for the catalyst. On the other hand, the conversion of CH4 drops because of the decrease of surface area, when the calcination temperature is raised.
Resumo:
CO2-TPD was used to study the surface basicity of La-Me-O mixed oxides and O-2-TPD, CH4-TPD were employed to study the surface active oxygen species. Comparing the CO2-TPD with O-2-TPD, we can see that the basicity of catalyst is in parallel with the catalystic activity. The stronger basicity is more profitable for the catalyst to adsorb oxygen to form active oxygen species and to activate CH4 by breaking a C-H bond, By comparing the catalytic activity, the results showed that La-Ba-O(La/Ba=7/3) catalyst had the strongest basicity, and it gave the highest CH4 conversion and C-2 selectivity, The results from the pulse reaction showed that the lattice oxygen participated in the OCM reaction without gas oxygen, and it was the selective oxygen species.