387 resultados para Nuclear Physics
Resumo:
We have investigate the nucleon superfluidity in asymmetric nuclear matter and neutron star matter by using the Brueckner-Hartree-Fock approach and the BCS theory. We have predicted the isospin-asymmetry dependence of the nucleon superfluidity in asymmetric nuclear matter and discussed particularly the effect of microscopic three-body forces. It has been shown that the three-body force leads to a strong suppression of the proton S-1(0) superfluidity in beta -stable neutron star matter. Whereas the microscopic three-body force is found to enhance remarkably the (PF2)-P-3 neutron superfluidity in neutron star matter and neutron stars.
Resumo:
The in medium nucleon-nucleon (N N) cross sections in isospin asymmetric nuclear matter at various densities are investigated in the frame work of Brueckner-Hartree-Fock theory with the Bonn B two-body nucleon-nucleon inter action supplemented with a new version microscopic three-body force (TBF). The TBF depresses the amplitude of cross sections at high density region. At low densities, the proton-proton and neutron-neutron cross sections decrease while the proton-neutron one increases as the asymmetry increases. But the sensitivity of the N N cross sections to the isospin a symmetry are reduced with the increasing density.
Resumo:
Using a transport model coupled with a phase-space coalescence after-burner we study the triton-He-3 relative and differential transverse flows in semi-central Sn-132 + Sn-124 reactions at a beam energy of 400 MeV/nucleon. We find that the triton-He-3 pairs carry interesting information about the density dependence of the nuclear symmetry energy. The t-He-3 relative flow can be used as a particularly powerful probe of the high-density behavior of the nuclear symmetry energy.
Resumo:
The experimental results reveal the isospin dependence of the nuclear phase transition in terms of the Landau Free Energy description of critical phenomena. Near the critical point, different ratios of the neutron to proton concentrations lead to different critical points for the phase transition which is analogous to the phase transitions in He-4-He-3 liquid mixtures. The antisymmetrized molecular dynamics (AMD) and GEMINI models calculations were also performed and the results will be discussed as well.
Resumo:
By means of low temperature photoluminescence and synchrotron radiation X-ray diffraction, existence of stacking faults has been determined in epitaxy lateral overgrowth GaN by metalorganic chemical vapor deposition.
Resumo:
In situ energy dispersive X-ray diffraction measurements on nanocrystalline zinc sulfide have been performed by using diamond anvil cell with synchrotron radiation. There is a phase transition which the ultimate structure is rocksalt when the pressure is up to 16.0GPa. Comparing the structure of body materials, the pressure of the phase transition of nano zinc sulfide is high. We fit the: Birch-Murnaghan equation of state and obtained its ambient pressure bulk modulus and its pressure derivative. The bulk modulus of nanocrystalline zinc sulfide is higher than that of body materials, it indicate that the rigidity of nanocrystalline zinc sulfide is high.
Resumo:
Boiling is an extremely complicated and illusive process. Microgravity experiments offer a unique opportunity to study the complex interactions without external forces, such as buoyancy, which can affect the bubble dynamics and the related heat transfer. Furthermore, they can also provide a means to study the actual influence of gravity on the boiling. Two research projects on pool boiling in microgravity have been conducted aboard the Chinese recoverable satellites. Ground-based experiments both in normal gravity and in short-term microgravity in the Drop Tower Beijing and numerical simulations have also been performed. Steady boiling of R113 on thin platinum wires was studied with a temperature-controlled heating method, while quasi-steady boiling of FC-72 on a plane plate was investigated with an exponentially increasing heating voltage. It was found that the bubble dynamics in microgravity has a distinct difference from that in normal gravity, and that the heat transfer characteristic is depended upon the bubble dynamics. Lateral motions of bubbles on the heaters were observed before their departure in microgravity. The surface oscillation of the merged bubbles due to lateral coalescence between adjacent bubbles drove it to detach from the heaters. Slight enhancement of heat transfer on wires is observed in microgravity, while diminution is evident for high heat flux in the plate case.
Resumo:
Within the framework of a dinuclear system (DNS) model, the evaporation-residue excitation functions and the quasi-fission mass yields in the 48Ca induced fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei based on stable actinide targets are obtained. Isotopic trends in the production of the superheavy elements Z = 110, 112–118 based on the actinide isotopic targets are analyzed systematically. Optimal evaporation channels and combinations as well as the corresponding excitation energies are proposed. The possible factors that influencing the isotopic dependence of the production cross sections are analyzed. The formation of the superheavy nuclei based on the isotopes U with different projectiles are also investigated and calculated.
Resumo:
One of the major tasks of studying isospin physics via heavy-ion collisions with neutron-rich nuclei, is to explore the isospin dependence of in-medium nuclear effective interactions and the equation of state of neutron-rich nuclear matter, i.e., the density dependence of nuclear symmetry energy. Because of its great importance for understanding many phenomena in both nuclear physics and astrophysics, the study of the density dependence of nuclear symmetry energy has been the main focus of the intermediate。中文摘要:同位旋物理的主要任务之一是通过放射性核束引起的核反应来探索介质中有效核子 核子相互作用的同位旋依赖性,尤其是同位旋相关的核物质状态方程,即,密度依赖的核物质对称能。由于对称能,尤其是其高密行为,对核物理学和天体物理学具有重要意义,密度依赖的对称能在过去10年一直是中能重离子物理研究领域的主要焦点之一。近年来,低密对称能的研究已经取得了重要进展,而对称能的高密行为仍然很不确定。在理论方面,人们提出了许多对高密对称能敏感的观测量。实验方面,关于对称能高密行为研究的实验计划已经展开,世界各地正在建造的放射性核束装置为对称能的高密行为研究提供了新的机遇。基于I BUU输运模型综述了研究对称能高密行为的一些敏感观测量及其最新进展,以及所面临的挑战与机遇。
Resumo:
In this paper,a multi-functional adapter circuit which can be used to accomplish level adaptation between the NIM,TTL,ECL levels will be described briefly.This circuit is designed based on the multiple-using structure of circuit unit.It is signal-width NIM standard module.The module is used for level adaptation between the different digital signals in the measurement system of nuclear physics experiments.中文文摘:基于单元电路复用结构,设计了NIM、ECL、TTL电平多功能适配器,介绍了电路复用结构和单元电路的设计原理。该插件用于核物理实验测量系统中不同逻辑电平的数字信号的适配与转换。