74 resultados para Merkle-Damgård construction
Resumo:
In this work. we report the fabrication of high-quality (101)-oriented orthorhombic NaMnF3 and (100)-oriented cubic KMnF3 perovskites via an organic monolayer template at room temperature. The controlled crystallization under the organic monolayer template is explained in terms of the electrostatic interactions and beneficial lattice matching between the organic template and the ions undergoing nucleation. The present study is of great importance in the preparation of oriented perovskite materials as well as in the understanding of the mechanism for organic-template-directed crystallization.
Resumo:
The influences of different cations on plasmid DNA network structures on a mica substrate were investigated by atomic force microscopy (AFM). Interactions between the DNA strands and mica substrate, and between the DNA strands themselves were more strongly influenced by the complex cations (Fe(phen)(3)(2+), Ni(phen)(3)(2+), and Co(phen)(3)(3+)) than by the simple cations (Mg2+, Mn2+, Ni2+, Ca2+, Co3+). The mesh height of the plasmid DNA network was higher when the complex cations were added to DNA samples. The mesh size decreased with increasing DNA concentration and increased with decreasing DNA concentration in the same cation solution sample. Hence, plasmid DNA network height can be controlled by selecting different cations, and the mesh size can be controlled by adjusting plasmid DNA concentration.
Resumo:
Mixed monolayer films of octadecylamine (ODA) and oligo-DNA were prepared by Langmuir-Blodgett technique and the monolayer films were used as template to direct the formation of different CdS nanostructures. It was found that CdS nanowire was observed when the monolayer film prepared at low surface pressure was used as template, and aggregate of CdS spheres was obtained when the monolayer film deposited at high surface pressure was used as template.
Resumo:
An amperometric tyrosinase enzyme electrode for the determination of phenols was developed by a simple and effective immobilization method using sol-gel techniques. A grafting copolymer was introduced into sol-gel solution and the composition of the resultant organic-inorganic composite material was optimized, the tyrosinase retained its activity in the sol-gel thin film and its response to several phenol compounds was determined at 0 mV vs. Ag/AgCl (sat. KCI). The dependences of the current response on pH, oxygen level and temperature were studied, and the stability of the biosensor was also evaluated. The sensitivity of the biosensor for catechol, phenol and p-cresol was 59.6, 23.1 and 39.4 muA/mM, respectively. The enzyme electrode maintained 73% of its original activity after intermittent use for three weeks when storing in a dry state at 4 degreesC. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The sol-gel technique was used here to construct heteropolyanion-containing modified electrodes. This involves two steps, i.e. the first forming a functionalized sol-gel thin film on the surface of the glassy carbon electrode and then immersing the electrode into a heteropolyanion solution to incorporate the heteropolyanion into the sol-gel film. Here a Dawson-type heteropolyanion, K6P2W18O62 (P2W18), was used as a representative to illuminate the behavior of the as-prepared composite film. The electrochemical performance of the P2W18-modified electrode was studied with respect to the pH effect and long-term stability. The modified electrode exhibited a high electrocatalytic response for the reduction of BrO3- and NO2-. Steady-state amperometry was applied to characterize the electrode as an amperometric sensor for the determination of NO2-. The sensor had a linear range from 0.02 to 34 mM and a detection limit of 5 x 10(-6) M. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A novel amperometric glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of glucose oxidase (GOD) on the surface of a horseradish peroxidase (HRP) modified ferrocenecarboxylic acid (FCA) mediated sol-gel derived ceramic carbon electrode. The amperometric detection of glucose was carried out at +0.16 V (vs. SCE) in 0.1 mol/L phosphate buffer solution (pH 6.9) with a linear response range between 8.0x10(-5) and 1.3x10(-3) mol/L of glucose. The biosensor showed a good suppression of interference and a negligible deviation in the amperometric detection.
Resumo:
An amperometric glucose biosensor was constructed based on a glassy carbon electrode modified with a Cobalt(II)hexacyanoferrate film which catalyzes electroreduction of hydrogen peroxide. Gelatin was used as immobilization matrix. Interference could be effectively eliminated by the combination of low detection potential with a Nafion coating. A low applied potential can avoid oxidation of interferences such as ascorbic acid, uric acid, p-acetyl-aminophenol, etc.. Nafion coating prevents interferences from access to the electrode surface by electrostatic repulsion. A wide linear range of detection was obtained. Analytical performance parameters are given and kinetic analysis discussed.
Resumo:
A tyrosinase-based amperometric biosensor using a self-gelatinizable graft copolymer of poly(vinyl alcohol) with 4-vinylpyridine (PVA-g-PVP) as an immobilization matrix was constructed. The 4-vinylpyridine component of PVA-g-PVP enhances the adherence to a glassy carbon electrode surface. The content of 4-vinylpyridine in this immobilization matrix plays a key role in retaining the activity of tyrosinase. A simple, milder method was adopted by simply syringing the copolymer-tyrosinase aqueous solution on to the electrode surface and allowing water to evaporate at 4 degrees C in a refrigerator. Several parameters, including copolymer composition; pH, applied potential and enzyme membrane composition, ware optimized. The enzyme membrane composition can be varied to obtain higher sensitivity or a wider linear detection range. The biosensor was used for the determination of phenol, p-cresol and catechol. The biosensor exhibited excellent reproducibility, stability and sensitive response and can be used in flow injection analysis. The biosensor showed an extended linear range in hydrophilic organic solvents and it can be used in monitoring organic reaction processes. The analytical performance demonstrated this immobilization matrix is suitable for the immobilization of tyrosinase.
Resumo:
A novel functionalized inorganic-organic hybrid material with cation exchange property was prepared by sol-gel method. The H2O2 biosensor was fabricated by simply dipping the horseradish peroxidase-containing functionalized membrane modified electrode into Meldola's blue (MDB) solution. MDB was adsorbed and firmly immobilized within the membrane. The electrochemical behavior of MDB incorporated in the membrane was more reversible compared with that of the solution species and suitable as mediator for the horseradish peroxidase. The response time was less than 25 s. Linear range is up to 0.6 mM (COH. coeff. 0.9998) with detection Limit of 9 x 10(-7) M. High sensitivity of 75 nA mu M cm(-2) was obtained due to high MDB-loading. The biosensor exhibited a good stability. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
A new immobilization material and an immobilization method for a glucose sensor with HEFc (hydroxyethylferrocene) as mediator is described. In the course of three months, the enzyme electrode shows almost no deterioration in its response characteristics. The response time is less than 30 s. The electrode has a wide linear range up to 10 mmol l(-1) with good repeatability. The kinetic parameters have also been calculated.
Resumo:
A new immobilization method for construction of a tyrosinase based biosensor is described. A simple physical freezing technique was adopted for preparation. The immobilized enzyme yields specific activities that are more than 22% of the soluble enzyme. The enzyme electrode can be stored in dry state for more than three months without any loss of activity. The biosensor was applied to the determination of several phenols and o-diphenols. The lowest detect limit is 0.02 mu mol/1 and the linear range was 1.0 X 10(-7)-1.0 X 10(-4) mol/1 for catechol. The kinetic parameters have also been calculated.
Resumo:
A novel immobilization method for construction of a tyrosinase-based biosensor applied in pure organic phase is described. This method gives the enzyme a hydrated shell which allows the enzyme to maintain its biocatalytic activity in a pure organic solvent The enzyme electrode was used to determine several phenols and o-diphenols in pure chloroform and chlorobenzene. The biosensor can be stored in dry state for more than 3 months without any loss of the activity. The kinetic parameters have also been calculated and are presented herein.
Resumo:
A new liquid chromatography electrochemical (LCEC) scheme for glucose sensing has been developed on the basis of a Prussian Blue chemically modified electrode (CME) of novel construction and characterized in terms of various experimental parameters by the flow injection analysis (FIA) technique. Unique hydrodynamic voltammograms were obtained for the first time at the CME in the flow-through amperometric detection of glucose, and subsequently both anodic and cathodic peaks could be expected on monitoring the operating potential in the modest positive or negative region. The unique pH dependence on the CME response towards glucose makes it perfectly compatible with conventional reversed phase liquid chromatography systems. On the basis of these features, practical application in glucose LCEC detection has been effectively performed; a linear response range over three orders of magnitude and a detection limit of subpicomole level were readily obtained. The capability of the established LCEC mode in the direct sensing of urinary glucose has been demonstrated.