106 resultados para MON810 maize
Resumo:
玉米(Zea mays L.)是我国十分重要粮食、饲料和工业原料作物,种植区域覆盖我国大部分农业区。随着玉米品种改良和新栽培技术的应用,我国玉米产量大幅度增加。自1950s以来,我国玉米产量递增幅度为126kg/hm2/yr。在玉米产量提高过程中,单叶光合作用与产量之间存在什么样的关系?当代玉米品种的品质和养分利用效率如何?高密度种植条件下是否存在“根系拥挤”及如何调控等。为探讨上述科学问题,本研究选择中国北方常见的大田玉米品种,在高肥力自然光照条件下,探讨玉米高产优质栽培过程中生理生态特征的变化趋势,以指导科学育种和栽培。主要研究结果如下: 1)光合与产量的演变我国 1950s、1970s、1990s等不同年代推广的玉米品种中,当代品种叶片光合速率高且高值持续期长,光合色素叶绿素a、叶绿素b、类胡萝卜素等的含量高且持续时间长,与光合有关的蒸腾速率(E.)、细胞间隙CO2浓度(Ci.)、气孔导度(gs)等也有较大改良,中下部叶片尤其明显;在生育后期,当代品种具有更高的光合优势。老品种饱和光合速率(Psat)在灌浆期下降,并非RuBPCase 和PEPCase的活性降低,而是由于叶绿素含量和可溶性蛋白含量的降低。在花后期间,由于PS2功能的下降,造成了光合能力下降,而现代品种的PS2 功能在衰老前一致保持旺盛状态。 老品种光合特征对缺氮的反应表现更敏感。花后缺氮光合作用下降是非气孔限制的,因为气孔导度和胞间CO2浓度没有发生明显的变化。其主要原因是缺素造成老品种叶片早衰,叶绿素含量、可溶性蛋白含量、PEP羧化酶活性下降。现代品种表现较强的抗衰老能力,其N素利用效用高于老品种。我国玉米产量的大幅度提高在很大程度上应归功于叶片光合性能的改良。 随玉米品种更替,群体光合速率增强,群体光合衰减率降低,呼吸消耗所占总光合的百分率下降。灌浆期当代品种中下部叶片的群体光合速率明显高于老品种。种植密度是影响玉米群体光合速率的主要因素,在高中低三种密度条件下,当代品种均有较高的群体光合速率,表现出耐密性强、适应性广、源足库大、产量高的特点。 2)高油玉米的产量受到叶源大小和叶源活力的双重限制在 1.5 株/m2密度下,与普通玉米相比较,高油玉米单株籽粒产量显著低于普通玉米,产量构成中穗粒数差异不显著,千粒重较低(P<0.01);两类型玉米的单株库容量相当,高油玉米籽粒灌浆速率小,籽粒充实度低,单粒重对叶源相对减少(剪叶)或相对增多(疏库)的反应比普通玉米更为敏感,其产量受到同化产物供应(叶源)相对不足的限制。高油玉米授粉后的叶面积、叶面积持续期小,叶片含氮量和光合速率较低,说明高油玉米的产量受到叶源活力(光合速率)小和叶源数量少的双重限制。 3)我国北方玉米品种的个体产量潜力、氮素利用效率及籽粒与秸秆粗蛋白质含量在充分发挥个体生产潜力的低密度条件下,我国北方1990s 以来大面积种植的50个玉米主栽品种中,个体产量潜力和氮素利用效率高度正相关(P=0.01),而子粒千粒重与NUE 呈显著性负相关(P=0.002)。对玉米产量和氮素利用效率进行分层聚类,可将北方玉米品种划分为高产高NUE 型、低产低NUE 型和中间型,高产高NUE 型玉米品种相对较少,仅占24%。籽粒粗蛋白质含量(CPC)与秸秆CPC 相关性不显著(P>0.05)。对籽粒和秸秆的CPC 进行分层聚类,将北方玉米品种划分为籽粒高秸秆低型、籽粒与秸秆双低型和籽粒与秸秆双高型,CPC 双高型品种相对较少,仅占20%。 4)玉米根系拥挤效应对产量影响的生理生态机制及其调控随玉米品种更替根系的空间分布呈“横向紧缩,纵向延伸”的特点。当代三类型玉米根系分布特性与株型、穗型相关。紧凑型品种根系分布深,下层根系所占比率大,适合密植,群体产量潜力大;平展大穗型品种根量多,分布较浅,在低密度下可获得较高的个体生产力,但不适合密植,群体产量潜力小。 “根系拥挤”显著影响玉米产量,减小根系横向伸展空间,下层土壤中的根系分配比率增多。在地上部充分生长条件下,紧凑型品种横向空间为30-50cm即可满足要求,平展型品种大于50cm;紧凑型品种对纵向空间受限制的反应更为敏感,平展型品种对横向空间受限制的反应更为敏感。“根系拥挤”影响根系活性、分布、氮素吸收利用和花后光合与14C同化物的分配。 在根系受限制条件下,增施肥料产量提高,根系总重增加,增加了根系在深层土壤(60-100cm)中的根系比率,显著增加了根系的TTC 还原量、SOD、CAT、POD活性。土壤加沙,根量减少,但根系TTC 还原量增加、产量提高,提高幅度以大穗型品种更为显著。 随种植密度增加耕层根系密度与群体产量同步增大,各类品种均在最高根系密度下获得最高产量。根系负荷的籽粒产量潜力三类型品种存在极大差异,在一定范围内增大种植密度,根系伸展空间减小,群体产量提高,紧凑大穗型品种产量最高,品种的耐密性是限制根系负荷籽粒产量潜力的主导因素。因此,培育株型紧凑、耐密性强、大穗玉米良种,采取有效的调控措施是玉米进一步高产的主攻方向。 5)我国夏玉米高产田的培创理论研究与实践相结合,2005 年在我国华北地区的山东莱州培创出籽粒实产21 042.9kg/hm2 ( 14% 含水量, 实收面积=45.7m×15.9m=726.63m2)的夏玉米高产纪录。主要采用以增加密度为保障的“群体结构性挖潜”和以提高整齐度为保障的“个体功能性挖潜”途径,生理生态指标包括:选用紧凑抗倒耐密植品种DH3719,种植密度102 030 株/hm2,收获密度98 610 株/hm2,花后具有较长的叶面积高值持续期,达60d以上,叶面积指数最大为6.53,收获2.59。上部叶片光合值对外界光强度变化敏感,其光合峰值出现时间提前,而后迅速衰减;中部叶片光合值的降低较慢,下部叶片变幅最小,可能是长期处于争光环境表现出的生态适应性。粒叶比0.32,经济系数0.542,单株产量216g,千粒重375.1g。
Resumo:
干旱化问题将在全球环境变化下进一步加剧,并可能严重影响玉米。玉米是我国主要粮食和最重要的饲料作物,其重要性日益突出。水分是制约玉米产量的关键因子。为此,本研究利用大型活动遮雨棚对玉米进行了出苗后全程水分控制试验,研究大田条件下玉米不同生育期对不同土壤水分(包括水分充足well-watered, WW;适度干旱moderately stressed,MS;和严重干旱severely stressed,SS)的响应及适应机制。研究结果表明: 在吐丝和籽粒形成期,Ms对叶片相对含水量和相对电导率的影响没有达到显著或极显著水平,而SS则极其显著地降低叶片相对含水量和增加质膜透性。并且干旱胁迫下,夏玉米生育进程中保护酶SOD、POD和CAT活性基本呈现一致下降的态势,膜脂过氧化作用增强。短期干旱胁迫对SOD)和POD(在第十三叶期)保护酶有一定的激发效应,但此效应维持不长,其后骤降。 干旱会引起叶绿素a,b含量及总叶绿素含量的减少。MS下营养阶段的叶绿素含量没有明显变化,但随着MS的延续,叶绿素含量在生殖阶段显著降低。而SS的叶绿素含量最初就呈现降低并逐渐扩大。另外,在干旱胁迫下叶净光合速率(PN)和蒸腾速率(E)的降低因干旱强度和时间以及发育阶段而异,而且Ss所引起的不利影响更为凸现。SS显著降低营养和生殖阶段的水分利用效率( WUE),然而MS基本导致前中期WUE增加,后期则减少。 土壤干旱胁迫下,绿色LAI明显降低,特别是生殖时期最高穗位叶面积显著降低:地上部生物量积累在各生育期均为减少。而且,干旱显著减少各生育期的根干重,但MS对第十八叶期(V18)的根干重有短期的促进作用。干旱胁迫下,根冠比在不同生育时期有增有减。MS对第十七叶期(V17)的叶面积、抽雄吐丝出现、叶片展开、最终叶片数以及收获指数影响不大,但其却显著减少各阶段株高、叶面积(第十七叶期除外)、茎粗和生物量积累。随着MS的延续,产量性状诸如穗粒数、百粒重均为降低,而SS对各生育阶段所有生长特性、产量性状及收获指数的影响都较MS更为不利。 生育前期遭遇干旱,可使叶片展开明显迟缓,并且最终叶片数减少。尤其SS减少最终叶片数1~2片,并且延迟抽雄4—5 d,吐丝4—5 d,从而可能导致成熟期推迟。 植物器官的营养吸收动态在短期干旱作用和长期作用之间有所不同。而且P和K元素的积累方式也有别。基本上,干旱胁迫显著降低植物器官在不同生育期的全P和K元素的吸收,尽管后期一些器官诸如叶、鞘和茎等的吸收有所增加,特别是干旱严重影响了根的吸收能力,而且SS较MS对全P.K吸收影响更甚。总之,干旱所导致的生物量减少与植物器官的全P、K吸收的减少是相伴而生的。 与WW相比较,MS和SS的产量两年内分别降低了20,4%—26,1%和59.2%~84.5%,穗粒数分别降低了12.1%~19.7%和39,8%~88.1%,以及百粒重分别降低了2.1%~2.7%和17.7%—46,9%。研究进一步表明,干旱胁迫对多数玉米籽粒的营养品质有利。与WW相较而言,N含量、可溶性总糖、可溶性还原糖、Zn. Ca. Cu. Mg和Mn元素在MS下分别提高了5.9%,39-0%,97.5%,12.1%,4.4%,7.5%,6.1%和2.9%,而在SS下则分别提高了8.6%,99.3%,300.0%,27.8%,24.0%,1 5.3%,9.8%和7.9%。但是,一些玉米籽粒的营养品质诸如淀粉、P和K含量却受到干旱胁迫的不利影响,与WW相比较,MS使籽粒淀粉、P和K含量分别降低了8.3%.12.6%和3.7%,而SS则分别降低了33.3%, 14.6%和18.6%。粗脂肪含量则表现有所不同,与WW比较而言,MS对之有利,2年平均增加9.2%,而SS对之不利,2年平均减少11.3%。 总之,玉米生理生态特征、地上部各部分干物质生产、根系生长、营养吸收、产量性状、营养品质对干旱胁迫的响应和适应不仅依赖于干旱的严重程度(包括强度和时间),而且也依赖于玉米发育阶段。本研究认为,在半湿润地区水分缺乏的条件下,有限灌溉(最低土壤相对含水量55%士5%)在营养阶段抽雄前实施可行。
Resumo:
浑善达克沙地位于内蒙古自治区锡林郭勒高原中部,是我国温带草原区最主要的沙地之一。由于沙质土壤特性和大陆性季风气候等自然条件的限制,长期过度放牧导致了沙地植被退化、固定沙丘活化等一系列环境问题,进而威胁到区域生态安全和可持续发展。恢复和重建退化了的沙地植被,防止沙漠化的进一步扩大已经刻不容缓。 本论文的目的是揭示沙地植被类型与环境的生态关系、沙地植物群落结构特点以及播种时期对沙地人工草地青贮玉米产量的影响,为在沙漠化防治中选择合适的治沙物种、制定合理的植被恢复方案、确定符合当地气候特点的人工草地最佳播种时间等提供理论依据。论文包括三方面的内容:1浑善达克沙地中部丘间低地植物群落分布与土壤环境因子关系;2浑善达克沙地中部植物群落物种多样性与土壤环境因子关系;3播期对浑善达克沙地青贮玉米产量的影响。 对在浑善达克沙地中部丘间低地上获取的102个植物群落样方进行了分析,按照样方中建群种和优势种的重要值把它们归属于28个植物群落类型。对102个群落样方进行去趋势典范对应分析(DCCA),结果表明DCCA排序轴第一轴主要代表地下水位的变化梯度;第二轴主要代表土壤的全氮含量和有机质含量的变化梯度;第三轴则代表土壤溶液的酸碱度值,即地下水位、土壤有机质、全氮含量和土壤溶液酸碱度影响沙地丘间低地植物群落的分布格局。 对流动-半流动沙丘、固定沙丘、丘间低地和淖尔边缘湖沼等四种生境的物种多样性研究结果表明,分布在流动沙丘-半流动沙丘的植物群落的物种丰富度指数和物种多样性指数最低,生态优势度指数较高,均匀度指数相对较高;固定沙丘的物种丰富度指数、物种多样性指数和均匀度指数较高,优势度指数较低;丘间低地和淖尔边缘湖沼的植物群落的物种丰富度指数,多样性指数低于固定沙丘的,但是高于流动-半流动沙丘的,优势度指数高于固定沙丘的,均匀度指数低于流动-半流动沙丘的。各个指数和土壤环境因子的相关分析表明,土壤溶液的酸碱度、土壤全氮和有机质含量与物种多样性有着较强的相关关系。 人工草地青贮玉米分期播种的实验结果显示:随着播期的推迟,英红玉米的地上生物量由2453±161kg/hm2降至1055±68kg/hm2;巴贮玉米的地上生物量由2159±65kg/hm2降至1016±70kg/hm2。两个品种的叶面积和株高都随着播期的推迟逐渐下降。5月27日和6月4日播种的青贮玉米的株高、叶面积和地上生物量显著高于6月11日和6月18日播种的青贮玉米的株高、叶面积和地上生物量(p<0.05)。实验结果表明将当前生产实践中播种时间由6月中旬提前至5月底和6月初可以显著提高种植青贮玉米的产量。
Resumo:
利用动态密闭气室法(Licor-6400-09),对锦州玉米生长季(5~9月)农田土壤呼吸作用动态及其影响因子进行连续两年的野外动态观测,分析表明,在植株尺度上,玉米地土壤呼吸作用存在明显的空间异质性,较高的土壤呼吸速率通常出现在靠近玉米植株的地方。玉米地土壤呼吸作用的日变化为不对称的单峰型曲线,最小值和最大值分别出现在6:00~7:00和13:00左右。2005年玉米生长季土壤呼吸速率均值为3.16 µmol CO2 •m-2•s-1,最大值为4.77 µmol CO2 •m-2•s-1,出现在7月28日,最小值为1.31 µmol CO2 •m-2•s-1,出现在5月4日。 植物根系生物量的分布格局是影响土壤呼吸作用空间异质性的关键因素。土壤呼吸作用与根系生物量呈显著的线性关系,而土壤湿度、土壤有机质、全氮和碳氮比对土壤呼吸作用空间异质性的影响并不显著。在土壤呼吸作用日变化中,土壤呼吸速率(SR, µmol CO2 •m-2•s-1)与10 cm土壤温度(T, ℃)均呈显著的指数函数关系 。在季节尺度上,参数α和β是波动的,玉米净第一性生产力(NPP, g •m-2 •d-1)和生物量(B, g •m-2)分别为影响参数α和β季节性波动的主导因素。鉴于此,建立了方程 用以模拟土壤呼吸作用的季节变化。土壤温度、NPP和生物量共同影响着玉米生长季土壤呼吸作用的季节性变化,它们共同解释了土壤呼吸作用季节变化的93%。 小时尺度上,土环中的根系生物量是影响土壤呼吸速率空间变异的关键因子,土壤呼吸速率与根系生物量呈线性关系 ;日时间尺度上,土壤呼吸速率与根系生物量线性方程中的参数α和β是波动,土壤温度是影响α和β波动的主导因素,于是得到方程 。季节时间尺度上,土壤呼吸作用可表达为 ,土壤温度、土壤湿度和玉米NPP共同驱动着玉米生长季土壤呼吸作用的时间变化和空间变异,它们可以解释玉米生长季土壤呼吸作用时空变化的74%。 通过建立土壤呼吸作用与玉米根系生物量的回归方程,对根系呼吸作用占土壤呼吸作用的比例进行了间接估算。玉米生长季根系呼吸作用占土壤呼吸作用的比例在43.1~63.6%之间波动,均值为54.5%。假定玉米果实和秸杆中的碳在收获期间没有从农田中转移走,2005年整个生长季玉米生态系统的碳收支为–1127.0 gC•m-2,碳交换速率在 0.52~-18.05 g C•m-2 •d-1 之间波动。玉米生长初期,玉米生态系统表现为C的弱碳源;玉米播种后35天一直到收获,玉米生态系统表现为碳汇。
Resumo:
本文以中国不同年代主要的玉米品种为试验材料,深入研究了玉米品种更替过程中新老品种的生理生态特征和竞争力差异,分析了差异形成的原因并进行了理论探讨。 玉米新老品种竞争力差异的研究采用了单作和混作两种方式,设高低两个密度。生长过程中全面测量了生物量、形态、生理和群体指标,运用了生长分析的方法来研究竞争,整合了各水平参数来解释竞争结果,并用本研究数据检验了生长冗余理论。 玉米新老品种对比研究发现新品种的生理生态特征普遍优于老品种。这些优势不仅体现在较高的生物量积累、较大的籽粒库容和较强的再分配能力上,而且体现在高的叶面积指数、衰老过程中仍维持较高的叶绿素含量、可溶性蛋白含量和光合效率上,同时新品种的群体特性还具有更低的感病率和更少的无效分蘖。玉米新老品种竞争结果表明在混作条件下,相对总产量这一指标反映出新老品种间明显的互利效应,且这种效应随发育阶段而降低。新品种对老品种的相对竞争力则随着发育阶段波动,并且密度和发育阶段两因子对品种竞争力的影响有明显的相互作用。相对于新品种,老品种的确存在叶片和根系的生长冗余部分,但老品种并没有在混作竞争中获得明显的竞争优势,即玉米品种选育并不完全符合生长冗余理论,因此在理解植物竞争力方面仍需要其他层面更深入的探讨。 同时,玉米品种选育不完全符合生长冗余理论的结论在农学实践上并非毫无价值。因为新品种总生物量的提高,不仅增加了籽粒产量,而且增加了秸秆产量,提供了更多可利用的生物质资源。相对于仅仅关注粮食产量,综合利用中国农村巨大的生物质资源具有更重要的生态意义。
Resumo:
陆地生态系统与大气之间的水热碳交换是物质、能量循环的关键过程,一直以来都为研究者们所关注。进入20 世纪以来,特别是随着人们对全球气候变暖的逐步认识,气候变化对水热碳交换过程的影响及其对气候变化的响应研究更加备受关注。本研究以2004~2006 年近三年的涡度相关系统连续观测数据为依托,分析了雨养玉米农田水热碳通量的动态及其影响因子。研究表明,玉米农田水热通量(WHF) 呈显著的单峰型日变化, 日最大值出现在正午12:00~13:00,WHF 变化同步。潜热通量(LE)的季节变化规律与日变化相似,冬季小夏季大,年最大值与最小值分别出现在7 月和1 月。显热通量(Hs) 季节变化也呈单峰型,但年最大值出现在5 月,这主要与降水以及作物生长有关。半小时尺度上,WHF 主要受辐射控制,而日峰值受辐射峰值以及植被生长的双重影响;日尺度上,只要有降水过程,Hs 就会随土壤水分的增大而减小,降水停止后逐渐恢复。而降水对LE 的影响受到可用能量(AE)的干扰,表现出复杂的变化趋势。总的来说,降水持续时间越长AE 越少,对LE 的抑制越大;季节尺度上,WHF 受热量与水分的双重制约。Hs 随着天气回暖后第一次较大降水过程的出现呈现明显下降,而LE 则呈现相反的变化趋势。随着雨季到来和作物的生长,Hs 在7 月出现低谷,而LE 呈现相反的趋势随着降水量的增加而增大;年际间WHF 的分布规律大体一致,但因气象条件等的差异,特别是降水的差异造成年际间WHF 略有不同。在不同水文年型下,水分因子的影响作用有显著差异,且WHF 对热量与水分条件变化的敏感程度也不相同。欠水年,水分因子的作用更显著,是制约WHF 变化的主要控制因子,WHF 对水分的变化更敏感;而丰水年,水分因子的影响减弱,热量的盈亏决定着WHF 变化的主要方向。在不同水文年型下,水热碳通量对水热条件的变化表现出不同的响应方式,为研究生态系统对气候变化的响应提供了参考。 净碳(C)吸收期,玉米农田净碳交换(NEE)呈显著的日变化,在日出以后由CO2 释放转变为CO2 吸收,12:30 左右达到一天中的吸收峰值,日落前出现相反的转换。而净C 释放期内,NEE 均为正值且无明显日变化。NEE 季节变化也呈单峰型二次曲线,在7 月下旬或8 月上旬达到年最大吸收率。根据NEE 的正负,一年分为三个阶段:两个C 排放期与一个C 吸收期。一般C 吸收期从6月开始到9 月结束,此前此后均为C 排放期。在半小时、日时间尺度上,光通量密度(PPFD)与NEE 有着相似的变化规律,是控制NEE 的主要因子;在日、季节尺度上,叶面积指数(LAI)和气孔导度(gs)是影响NEE 的主要生物因子,且gs 的影响程度随着发育期的变化而变化,而不同年份间LAI 对NEE 的影响没有显著的差异。几乎在所有时间步长上,土壤温度(Ts)均为生态系统呼吸(Re)的主要控制因子,时间尺度愈短,二者的相关性愈好。总的来说,在较短时间尺度上,高PPFD 与夏季低温将会促进C 的吸收,有利于C 累积。 玉米农田日最大净C 吸收速率(NEEmax, daily)以及吸收释放转换点(NEE=0)均受PPFD 控制。NEEmax, daily 出现时间与PPFDmax, daily 出现时间几乎完全一致,当PPFD 达到1 日内极大值时,净C 吸收也相应达到了日最大值。但NEEmax, daily的量值还受到其它因子的影响。当水分条件充足时,还将受到LAI、gs 等生物因子的控制。NEE 由正转为负的转换点也是由PPFD 决定。当PPFD 稳定大于PPFD*( PPFD*=100 μmol•m-2s -1)时,净C 吸收开始;当PPFD 稳定小于PPFD*时,净C 吸收由此结束。1 日内,PPFD 稳定通过PPFD*之间的时间间隔决定了日净C 吸收的时间长度。日净C 吸收的时间越长,吸收量也越大,且有明显的季节变化,7 月最长9 月最短。 按照热量水分状况将三年分组,分为I 组(水分状况相似,热量条件不同)与II 组(热量条件相似,水分状况不同)。 I 组年际间PPFD 波动是造成C 交换格局变化的关键原因。而II 组年际间C 交换格局不同是由降水量及其不同分布引起的土壤含水量(SWC)变化是造成。SWC 可以解释年际间NEE 变异的97%,而大气水汽压亏缺(VPD)可以解释30.7%;温度因子通过影响C 收支中的呼吸项,间接影响着生态系统的NEE,它可以解释年际间NEE 变异的73.9%,也是造成年际间C 交换格局不同的原因之一;另外,PPFD 和发育期早晚以及净C吸收期长度等也同样影响着C 交换格局的变化。综合两组情况来看,由水分条件年际变化引起的NEE 的波动大于能量年际变化引起的波动。总之,在较长时间尺度上,NEE 对SWC 变化比其对PPFD 变化更敏感,说明在半干旱地区土壤水分条件仍然是决定C 交换格局的主导因子。 NEE 与LE 呈线性相关,它们之间的相关性主要受温度和NEE 的控制,温度越高,二者的相关性越弱,而NEE 越大二者相关性越好。同时,作物蒸腾与土壤蒸发的比例也是影响NEE 与LE 之间关系的主要因素。蒸腾作用所占的比例越大,二者的线性关系越显著,而土壤蒸发比例越大,二者的相关性越弱。总的来说,NEE 与LE 之间的线性关系有明显的季节变化,生长季好于非生长季,夏天好于冬天。 总之,雨养玉米农田水热碳通量既具有其它农田生态系统共有的动态特征,也具有其特有特征。
Resumo:
本文包括三个部分。第—部分研究了玉米杂交种及其亲本的光合特性;第二部分研究了环境因子对玉米杂交种及其亲本光合特性的影响;第三部分研究了一种玉米白化叶片突变体(zb/zb)的光合特性。通过对类囊体膜的叶绿素组成、吸收光谱,光系统Ⅱ活性、原初光能转化效率、激发能在两个光系统间的分.配、光还原活力、叶绿素蛋白复合体的组分及多肽分析,对杂种—代和两个亲本自交系在上述条件下的光合特性进行行了比较和分析。主要结果如下: 一、整体叶片叶绿素荧光动力学参数证实,与两亲本相比,玉米杂交种叶绿体类囊体膜 的PSⅡ还原侧有较大的PQ电荷库(CA/Fo),可以加快两个光系统间的非循环电子传递速率,有利于光合膜的能态化(△Fv/Fo和△Fv/T),调节有效的光合磷酸化。同时,杂交种具有较大的光合单位(T1/2)。这些都有利于光能吸收和提高光能转化效率及光合作用速率。整体叶片光合强度的测定结果支持了上述分析。 二、叶绿体光合特性分析数据表明玉米杂交种和亲本在光能吸收、荧光诱导瞬变、电子传递和激发能分配等方面的数量差异;这些结果支持了整体叶片相应的测试结果。由此推断,杂交种和亲本在光合活性方面的差异,可能发生在代谢调节或酶调控水平上。玉米杂交种类囊体膜的光合特性的遗传方式很可能主要受核基因控制。产生杂种优势的主要原因是两亲本互补。在本试验中,生物量杂种优势达118.4% 三、环境因子对玉米杂交种和亲本类囊体膜光合特性的影响主要表现在五个方面。 1. C02浓度升高可提高叶绿素含量;盐分胁迫和低温胁迫减少叶绿素含量。 2. PSⅡ原初电子受体Q的氧化还原状态对环境因子敏感。C02浓度升高促进了Q的重新氧化,盐分胁迫和低温胁迫则影响其重新氧化。 3. 环境因子对激发能在叶绿体两个光系统间分配的影响各不相同。C02浓度升高,有利于激发能向PSⅠ的分配。低温胁迫和盐分胁迫,使母本叶绿体中的激发能分配明显受阻而杂交种和父本的影响较小。 4. 捕光叶绿素a/b蛋白复合体对环境因子比较敏感。C02浓度升高可增加其含量,胁迫因子使其含量减少。 5. 玉米杂交种在光合特性方面对环境因子的适应性通常表现为超双亲。对不同环境因子的反应方式,多数是偏向父本。这表明玉米光合作用对环境的适应性主要是受核基因遗传控制,具有明显的杂种优势,因而杂交种对环境变化有较强的调节能力。 四、玉米白化叶片突变体(zb/zb)的叶绿体膜仅处在发育的初级阶段。zb/zb突变体的叶绿体膜几乎没有基粒结构。间质片层膜也比较希疏。叶绿素蛋白复合物含量明显少于正常发育的叶绿体。对光能的吸收仅相当于正常叶绿体的43%,光系统I的活力相当于正常的l/5,原初光能转化效率为正常的1/3,低温荧光发射强度也明显低于正常叶绿体。这些说明,玉米zb/zb突变体中膜的组分合成或质体片层的组装过程受到阻碍。这种发育不完善的膜缺乏叶绿素a/b蛋白复合物,缺乏基粒,但光系统I发育较完善,其电子传递链发育较缓慢,因而光系统Ⅱ活力和原初光能转化效率等明显低于对照。因此,具有这种膜结构的突变体光合生产力明显降低。
Resumo:
玉米幼苗经外源脱落酸(ABA)处理后,其生长与光合作用,如株高、干物质积累、净光合速率(Pn)、光合作用的量子效率(фC02)和羧化效率(CE),以及光系统II (PSII)实际光化学效率(фPSII)等受到抑制,且该抑制程度与处理ABA的浓度呈相关性。PSII最大光化学活性(Fv/Fm)变化表明,以10和25μmol L-I ABA处理玉米幼苗7天,可明显提高其抗光抑制能力,而50μmol L-1ABA处理的玉米幼苗在相同条件下的抗光抑制能力下降。进一步以25μmol L-lABA处理玉米幼苗来研究,结果表明ABA处理可减缓强光下玉米叶片Pn、CE、фPS II和叶片吸收光能光化学猝灭(qP)的下降,同时增强叶片吸收光能的非光化学猝灭(NPQ)。另外,叶绿素荧光非光化学猝灭的中间组分(qm)增强,光抑制后Fv/Fm的恢复能力提高,这表明ABA处理高提高了强光下玉米幼苗的光系统状态转换能力和Psn循环修复作用。除此之外,ABA处理后玉米幼苗的叶黄素循环类色素,如紫黄质(V)、环氧玉米黄质(A)和玉米黄质(Z)的含量增加,叶黄素循环库(V+A+Z)增大,说明依赖于叶黄素循环的热耗散在ABA处理玉米幼苗中得到加强。另外,ABA处理幼苗在强光下保持较高фPsII/Pn活性,以及叶片抗氧化酶活性提高,如超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、单脱氢抗坏血酸还原酶(DHAR)和谷胱甘肽还原酶(GR),抗氧化物含量增加,如抗坏血酸(AsA)、脱氢抗坏血酸(DHAsA)、还原型谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSH),这说明ABA诱导Mehler-peroxidase反应的增强在提高玉米幼苗抗光抑制能力中也发挥重要作用。 玉米叶片光系统I和光系统II在相同强度(300μmolm-2 S-l)的红光(655nm)和远红光(700-770 nm)共同照射下,光系统I(PSI)和光系统II(PSII)吸收光能基本平衡,叶片光合作用处于状态1,此时Psn保持较高的光适应下最大荧光( Fml)。关闭远红光,使叶片只处在红光照射下,则会引起光下PSII最大荧光( Frri2)的降低。关闭远红光约20nun后,光下下降的Psn最大荧光基本达到稳定,叶片光合作用处于状态2。这种在状态l向状态2的转换过程中所发生的PSII最大荧光下降不受DTT(叶黄素循环抑制剂)的影响,且整个过程中PsII最大光化学效率( Fv/Fm)保持不变,而光下PSII初始荧光(F0')在前20min内迅速降低。另外,在PSII吸收的红光照射下,玉米叶片吸收光向PSII分配的量(B)不断减少,与此同时,吸收光能向PSI分配的量(a)不断增多。ABA预处理玉米幼苗7天,可进一步加强红光下PSII最大荧光(Fm2)的降低,使荧光参数Fm1/Fm2—1增大,而使β/α-1降低。另外,ABA处理较对照幼苗在红光下呈现更高的荧光非光化学猝灭中间组分(qm)。在引入叶绿体蛋白激酶抑制剂NEM的情况下,ABA处理与对照玉米叶片在红光下所表现的qm差异则消失。从状态1向状态2的转换过程中,ABA处理引起玉米叶片77K低温荧光F684/F732的下降幅度显著加大。以上结果说明ABA处理可提高玉米幼苗光合作用的状态转换能力。 用的25μmol L-l ABA对玉米幼苗进行长时间(根系浇灌7天,LT)和短时间(实验前一天晚上叶面喷施1次,ST)处理,研究叶片C02同化、PsII化学活性,以及叶黄素循环的变化。结果表明在非光抑制状态下,LT与ST对玉米叶片光化学活性( Fv/Fm)及叶片羧化效率(CE)没有明显影响,但二者都引起叶片净光合速率(Pn)与气孔导度(Gs)下降。LT处理增大玉米叶片叶黄素循环库,而ST处理对该库大小没有影响。1500μmol m-2 s-1强光可明显引起玉米幼苗叶片Fv/Fm降低,但与对照幼苗相比,LT处理能显著减缓Fv/Fm降低。经60min强光照射后,ST与对照在Fv/Fm、фPS II、Pn和CE等参数上没有明显差异,但这些参数在LT处理的玉米幼苗中仍保持较高水平。LT处理幼苗叶黄素循环类色素含量及非光化学荧光猝灭(NPQ)都显著高于对照,膜脂过氧化产物MDA含量比对照低。而ST处理与对照在叶黄素循环类色素含量、NPQ和MDA含量等方面没有明显差异。以上结果说明ST处理对玉米幼苗光抑制没有明显影响,而LT处理可增强玉米幼苗抗光抑制能力,这可能与ABA处理使玉米幼苗在强光下维持较高的C02同化作用,以及其诱导叶片叶黄素循环增大有关。
Resumo:
植物根系大小和形态是决定植物吸氮能力的重要因素,而植物根系生长发育与土壤中营养元素的分布及其有效性密切相关,尤其是硝酸盐。然而目前关于硝酸盐调节植物根系生长的生理机制仍不清楚。一氧化氮(NO)是一种重要的气体信号分子,参与植物体内多种生理生化过程,包括调节根的生长发育。本研究以玉米自交系478为材料,采用营养液培养法,探讨了NO在硝酸盐调节玉米根系生长中的作用。主要结果和结论如下: 玉米幼苗在不同硝酸盐水平下生长7天后,主根伸长随着硝酸盐浓度的升高而下降;与0.01 mM硝酸盐处理下的玉米主根伸长相比,0.1 mM和1 mM硝酸盐处理对玉米主根伸长分别抑制了30%和36%。随着硝酸盐浓度的增加,玉米主根根尖过氧化氢(H2O2)含量表现出降低的趋势,而抗氧化酶,如超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)的活性则表现出增加的趋势。外源供应过氧化氢对低浓度硝酸盐(0.01 mM)和高浓度硝酸盐(10 mM)处理下的玉米根伸长都没有影响,这表明了根尖过氧化氢含量的下降不是高浓度硝酸盐抑制玉米主根伸长的原因。 NO供体硝普钠(SNP)能够缓解高浓度硝酸盐对玉米主根伸长的抑制,而对低浓度硝酸盐处理下的主根伸长没有影响,而且NO清除剂亚甲基兰(MB)和NO合成酶抑制剂Nω-硝基-L-精氨酸(L-NNA)显著抑制了低浓度硝酸盐处理下的玉米主根伸长,而对高浓度硝酸盐处理下的玉米主根伸长没有影响。用NO特异性荧光染料4,5-二氨基乙酰乙酸荧光素(DAF-2DA)检测结果表明:高浓度硝酸盐显著降低玉米根尖NO含量。而玉米根中的硝酸还原酶活性随硝酸盐浓度的增加而增加。以上结果说明,高浓度硝酸盐抑制玉米主根伸长可能是与根尖NO合成酶的下调所导致的内源NO含量的降低有关。 另外,外源生长素(IAA)能缓解高浓度硝酸盐对玉米主根伸长的抑制,同时,也增加了高浓度硝酸盐处理下玉米根中内源NO含量,而对低浓度硝酸盐处理下的玉米根中内源NO没有影响。因此推测,根尖生长素的下降导致内源NO含量的降低可能是高浓度硝酸盐抑制玉米主根伸长的原因。
Resumo:
本文以正常性玉米种子‘农大108’(Zea Mays L. ‘Nongda 108’) 种胚为实验材料,研究了玉米种子发育过程中脱水耐性的变化规律,细胞匀浆以及线粒体水平上活性氧清除酶活性与种子脱水耐性/敏感性的关系,以及线粒体结构和功能完整性在发育过程中不同阶段对脱水的应答,以期在亚细胞分区水平上,针对活性氧产生的源头位点 (线粒体) 探明种子细胞脱水耐性/敏感性与抗氧化系统运转的关系。结果表明: 玉米种子在发育过程中先获得萌发能力后获得脱水耐性,并且脱水耐性的获得是一个渐进的过程。人工授粉后26天 (Days after pollination, DAP) 之前的种胚不具有脱水耐性,26 DAP时开始获得脱水耐性,到34 DAP后种胚完全获得脱水耐性。 在发育过程中,种胚线粒体的呼吸速率逐渐降低,并且对脱水的敏感性也逐渐下降。脱水会降低脱水敏感性种胚线粒体的结构完整性;脱水同时会降低线粒体功能的完整性,包括线粒体能量产生的速率和效率,以及三羧酸循环关键酶的活性。但当种胚获得脱水耐性后,脱水将不再影响种胚线粒体结构和功能的完整性。 玉米种胚发育过程中脱水耐性的变化与细胞中的抗氧化系统有关。在细胞匀浆水平上,脱水过程中脂质过氧化产物的积累与细胞脱水耐性的关系不明显;但是在线粒体水平上脱水会明显导致脱水敏感性种胚线粒体膜质过氧化程度的升高。脱水导致脱水敏感种胚细胞中几个重要的抗氧化酶活性的下降,但是与细胞匀浆水平相比,在线粒体水平上抗氧化酶系统对脱水更加敏感。 总之,发育早期玉米胚对脱水之所以敏感有两方面的原因,一方面是发育早期线粒体具有较高的代谢速率因而产生过多的活性氧,另一方面是由于脱水导致各抗氧化酶活性的显著降低,失去了抗氧化保护功能。而在发育晚期,早期本来很活跃的许多代谢随之关闭,呼吸速率降到很低,因而产生的活性氧减少,同时由于抗氧化系统对脱水的耐受性,所以脱水不会对线粒体的结构和功能造成伤害。与细胞匀浆水平相比,线粒体水平上抗氧化系统的运转与种胚在发育过程中脱水耐性的获得的关系更加密切。
Resumo:
为了探讨不同灌溉制度对玉米根系生长和水分利用效率的影响及基因型间差异,在大型活动防雨棚和棚外田间条件下,利用一组玉米遗传材料杂交种户单四号、父本803和母本天四进行了研究。结果发现玉米杂交种在根系生长、分布和水分利用效率上表现出显著的杂种优势。在充分灌溉条件下,玉米杂交种在浅层的根长密度大于亲本,但在水分亏缺条件下,玉米杂交种根长密度在整个剖面上都显著大于亲本;同一玉米基因型在不同的灌溉制度下根长密度在土壤剖面的分布也不同,拔节期不灌溉条件下玉米根系在深层土壤中的分布较充分灌溉条件下大,保证了玉米对深层土壤水分的充分吸收,而后期灌水延缓了表层根系生长的衰退,产生明显的补偿效应;拔节期干旱而抽雄期和灌浆期灌水显著提高了3种基因型玉米的水分利用效率。通过合理灌溉优化玉米根系分布特性以提高玉米吸水能力和水分利用效率,是节水栽培上的可行途径。
Resumo:
通过调查取样的方法对长武塬面不同土地利用条件下(作物地,果园,苜蓿地)土壤水分状况在0~600 cm范围深度内进行对比,结果显示:长武塬区小麦收获期,不同土地利用条件下土壤水分含量总体存在较大差异,其中春玉米地由于上年小麦收获后直到春玉米播种前土地休闲,土壤含水量显著高于其它土地利用方式。其它土地利用条件下土壤平均含水量相对较低,在0~300 cm的范围内含水量分布表现为果园>苜蓿地>小麦地。300 cm以下含水量表现为小麦地>果园>苜蓿地;同时,不同利用条件下土壤水分剖面低湿层的位置深度也不相同,小麦地土壤水分低湿层深度较果园地和多年苜蓿地浅,土壤水分剖面形态与分布特征受利用模式影响显著。
Resumo:
在人工气候室水培条件下,以玉米(ZeamaysL.)杂交种F1代户单4号及其母本天四和父本478为材料,用细胞压力探针技术研究了正常供水和PEG-6000模拟–0.2MPa水分胁迫条件下,玉米根皮层细胞水分关系参数的基因型差异。结果表明,根皮层细胞的直径、长度和体积均为F1代>母本>父本;正常供水条件下3个玉米品种的根皮层细胞膨压均在0.6MPa左右且品种间差异不显著,水分胁迫抑制了细胞的延伸生长且F1代和母本的细胞膨压显著高于父本;根皮层细胞壁体积弹性模量均为父本>母本>F1代,水分胁迫条件下的品种间差异显著;与正常供水条件相比,水分胁迫条件下细胞膨压显著降低,而弹性模量则大幅度提高;在两种水分条件下,水分跨细胞膜运转的半时间均为父本>母本>F1代,且半时间在水分胁迫条件下均显著高于正常供水条件下;HgCl2处理引起了半时间的延长,2-巯基乙醇则部分逆转了HgCl2的效应;在两种水分条件下,根皮层细胞水导均为F1代>母本>父本且品种间差异显著,水分胁迫则显著降低了细胞水导。试验证明杂交种F1代的细胞水平根系吸水能力优于亲本,体现了杂种优势。
Resumo:
研究不同施磷水平对夏玉米生长期土壤硝态氮时空分布、累积量及玉米籽粒产量的影响,为夏玉米合理施肥提供参考依据。【方法】采用田间小区试验,在施磷水平分别为0,60,120和180 kg/hm2时,研究施磷对夏玉米产量及土壤氮素吸收累积的影响。【结果】在0~110 cm土层,随土壤剖面深度的增加,土壤硝态氮含量逐渐降低,0~30 cm土层明显高于30~110 cm土层且变幅较大,施磷肥能显著降低土壤硝态氮含量。随夏玉米生育期推进,0~110 cm土层硝态氮累积量呈先降低后升高的趋势,于灌浆期达到最低值;当施磷水平为120 kg/hm2时,成熟期0~110 cm土层硝态氮累积量低于施磷60和180 kg/hm2的处理;施磷肥能显著增加玉米籽粒产量、籽粒吸氮量及氮收获指数,均以施磷水平为120 kg/hm2时最高。【结论】在施氮基础上施用磷肥,有利于提高玉米籽粒产量,促进作物对氮素的吸收累积,减少土壤中硝态氮的累积及向更深土层中的运移量。