51 resultados para MICROSCOPIC VISUALIZATION
Resumo:
Cyclic voltammetry and in-situ microscopic FTIR spectroelectrochemistry were used for the electrochemical and vibrational characterizations of the reduction process of K3Fe (CN)(6) in polyethylene glycol(PEG) with LiClO4 as supporting electrolyte at a Pt microelectrode. The rate of electron transfer is a function of the concentration of the supporting electrolyte. The redox potentials and cyclic voltammetric currents vary with Li/O molar ratio. The bl-situ spectroelectrochemistry shows that the infrared spectra are influenced by the concentration of LiClO4. The bridging cyanide groups with a structure Fe-I-C drop N ... Fe-I-C drop N are formed during the reduction process of K3Fe (CN)(6). There may be an activated complex between the Lif cation and the complex anion.
Resumo:
In situ microscopic FTIR spectroelectrochemistry behavior of L-ascorbic acid (H(2)A) in polymer electrolyte is reported for the first time. H(2)A undergoes a two-step oxidation, The oxidation waves shift towards more anodic potential values when the scan rate increases. The peak currents of the oxidation waves are proportional to the square roots of scan rate up to 100 mV/s, The in situ infrared spectra suggest that the product of the oxidation be dehydroascorbic acid, which may exist as a dimer.
Resumo:
The collapse process of porphyrin monolayers at the air-water interface was studied by Brewster angle microscopy and by compression-recompression isotherms. It was found that the start of collapse observed by BAM is accordant with that measured by compression-recompression isotherms. The behavior of mixed monolayers was studied also and the results showed that porphyrin islands were excluded from mixed monolayers at 35mN/m.
Resumo:
The early stages of the electrodeposition of nickel on highly oriented pyrolytic graphite (HOPG) were investigated by in situ scanning tunnelling microscopy, scanning electron microscopy and electrochemical measurements. Experimental results showed that t
Resumo:
The proton-translocating NADH:ubiquinone oxidoreductase (complex I) has been purified from Aquifex aeolicus, a hyperthermophilic eubacterium of known genome sequence. The purified detergent solubilized enzyme is highly active above 50 degreesC. The specific activity for electron transfer from NADH to decylubiquinone is 29 U/mg at 80 degreesC. The A. aeolicus complex I is completely sensitive to rotenone and 2-n-decyl-quinazoline-4-yl-amine. SDS polyacrylamide gel electrophoresis shows that it may contain up to 14 subunits. N-terminal amino acid sequencing of the bands indicates the presence of a stable subcomplex, which is composed of subunits E, F, and G. The isolated complex is highly stable and active in a temperature range from 50 to 90 degreesC, with a half-life of about 10 h at 80 degreesC. The activity shows a linear Arrhenius plot at 50-85 degreesC with an activation energy at 31.92 J/mol K. Single particle electron microscopy shows that the A. aeolicus complex I has the typical L-shape. However, visual inspection of averaged images reveals many more details in the external arm of the complex than has been observed for complex I from other sources. In addition, the angle (90degrees) between the cytoplasmic peripheral arm and the membrane intrinsic arm of the complex appears to be invariant.
Resumo:
The F1F0 ATP synthase has been purified from the hyperthermophilic eubacterium Aquifex aeolicus and characterized. Its subunits have been identified by MALDI-mass spectrometry through peptide mass fingerprinting and MS/MS. It contains the canonical subunits alpha, beta, gamma, delta and epsilon of F-1 and subunits a and c of F-0. Two versions of the b subunit were found, which show a low sequence homology to each other. Most likely they form a heterodimer. An electron microscopic single particle analysis revealed clear structural details, including two stalks connecting F-1 and F-0. In several orientations the central stalk appears to be tilted and/or kinked. It is unclear whether there is a direct connection between the peripheral stalk and the 6 subunit. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.