108 resultados para Distributed-feedback (DFB) lasers
Resumo:
We demonstrate the fabrication and characterization of photonic-crystal distributed-feedback quantum cascade laser emitting at 4.7 mu m. The tilted rectangular-lattice PCDFB structure was defined using a multi-exposure of two-beam holographic lithography. The devices exhibit the near-diffraction-limited beam emission with the full width at half maximum of the far-field divergence angles about 4.5 degrees and 2.5 degrees for stripe widths of 55 mu m and 95 mu m, respectively. Single-mode emission with a side mode suppression ratio of approximate to 20 dB is achieved in the temperature range (80-210 K). The single-facet output power is above 1 W for a 95 mu m x 2.5 mm laser bar at 85 K in pulsed operation. (C) 2009 Optical Society of America
Resumo:
A ridge distributed feedback laser monolithically integrated with a buried-ridge-stripe spot-size converter operating at 1.55 mu m was successfully fabricated by means of low-energy ion implantation quantum-well intermixing and dual-core technologies. The passive waveguide was optically combined with a laterally exponentially tapered active core to control the mode size. The devices emit in a single transverse and single longitudinal mode with a sidemode suppression ratio of 38.0 dB. The threshold current was 25 mA. The beam divergence angles in the horizontal and vertical directions were as small as 8.0 degrees x 12.6 degrees, respectively, resulting in 3.0-dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
A novel butt-joint coupling scheme is proposed to improve the coupling efficiency for the integration of a GalnAsP MQW distributed feedback (DFB) laser with an MQW electro-absorption modulator (EAM). The proposed method gives more than 90% coupling efficiency, being much higher than the 26% coupling efficiency of the common MQW-MQW coupling technique. The differential quantum efficiency of the MQW-bulk-MQW coupled device is also much higher than that of the MQW-MQW device, 0.106 mW/mA versus 0.02 mW/mA. The EAM-DFB devices fabricated by the proposed method exhibit a very high modulation efficiency (12 dB/V) from 0 to I V. By adopting a high-mesa ridge waveguide and buried polyimide, the capacitance of the modulator is reduced to about 0.28 pF. The experimental results demonstrate that the method can replace the conventional MQW-MQW coupling technique to fabricate high-quality integrated photonic devices. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Electrical and optical coupling in an electroabsorption (EA) modulator integrated with a distributed feedback (DFB) laser have been investigated. The integrated device is treated as a three-port optoelectronic device with two electrical ports and one optical output port. The scattering parameters of this three-port device have been measured in the designed experiment. The measured results indicate that there exists the electrical coupling between the DFB laser and EA modulator of the integrated light source whenever the current applied to the laser section is below or above the threshold current, and the optical coupling will have stronger influence on the frequency responses than the electrical coupling when the bias current is above the threshold. A small-signal equivalent circuit model for the integrated device is established considering both the electrical and internal optical coupling. Experiments show that the equivalent circuit model is reasonable and the determined element values are correct. Based on the measurement and modeling, the influences of the electrical and optical coupling on the high-frequency responses are investigated and the effective measure to eliminate the additional modulation in the DFB laser are discussed.
Resumo:
A 1.55-mu m ridge distributed feedback laser and electroabsorption modulator monolithically integrated with a buried-ridge-stripe dual-waveguide spot-size converter (SSC) at the output port for low-loss coupling to a cleaved single-mode optical fiber was fabricated by means of selective area growth, quantum-well intermixing, and dual-core technologies. These devices exhibit threshold current of 28 mA, 3-dB modulation bandwidth of 12.0 GHz, modulator extinction ratios of 25.0-dB dc. The output beam divergence angles of the SSC in the horizontal and vertical directions are as small as 8.0 degrees x 12.6 degrees, respectively, resulting in 3.2-dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
Using non-identical quantum wells as the active material, a new distributed-feed back laser is fabricated with period varied Bragg grating. The full width at half maximum of 115 nm is observed in the amplified spontaneous emission spectrum of this material, which is flatter and wider than that of the identical quantum wells. Two wavelengths of 1.51 mu m and 1.53 mu m are realized under different work conditions. The side-mode suppression ratios of both wavelengths reach 40 dB. This device can be used as the light source of coarse wavelength division multiplexer communication systems.
Resumo:
A novel design approach to ultra-narrow transmission-band fiber Bragg grating (FBG) is proposed and demonstrated for the first time. The new grating consists of multiple identical distributed-Bragg reflector (DBR) cavities and a it-phase-shifted gap, and hence, the proposed laser is constructed by the cascade of these identical DBR fiber lasers. By manufacturing the proposed grating in a piece of Er-Yb codoped fiber, a single-wavelength single-longitudinal-mode (SLM) fiber laser with improved efficiency is demonstrated experimentally. The experimental results show that the pump-to-signal conversion efficiency of the proposed laser is improved by a factor of two in comparison with the optimized distributed-feedback (DFB) fiber lasers. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The compressively strained InGaAs/InGaAsP quantum well distributed feedback laser with ridge-wave- guide is fabricated at 1.74μm. It is grown by low-pressure metal organic chemical vapor deposition(MOCVD). A strain buffer layer is used to avoid indium segregation. The threshold current of the device uncoated with length of 300μm is 11.5mA. The maximum output power is 14mW at 100mA. A side mode suppression ratio of 35.5dB is obtained.
Resumo:
An improved butt coupling method is used to fabricate an electroabsorption modulator (EAM) monolithically integrated with a distributed feedback (DFB) laser. The obtained electroabsorption-modulated laser (EML) chip with the traditional shallow ridge exhibits very low threshold current of 12 mA, output power of more than 8 mW, and static extinction ratio of -7 dB at the applied bias voltage from 0.5 to -2.0 V.
Resumo:
A novel self-aligned coupled waveguide (SACW) multi-quantum-well (MQW) distributed Bragg reflector (DBR) laser is proposed and demonstrated for the first time. By selectively removing the MQW layer and leaving the low SCH/SACW layer the Bragg grating is partially formed on this layer. By optimizing the thickness of the low SCH/SACW layer, a ~80% coupling efficiency between the MQW gain region and the passive region are obtained. The typical threshold current of the SACW DBR laser is 39 mA, the slope efficiency can reach to 0.2 mW/mA and the output power is more than 20 mW with a more than 30dB side mode suppression ratio.
Resumo:
分析了布里渊分布式光纤传感技术原理,采用自行研制的光纤单纵模分布反馈(DFB)激光器结合电光调制技术,利用相干检测技术,对布里渊微弱后向散射信号进行检测。通过改进滤波放大技术,对微弱后向散射光信号进行有效放大,再用扰偏技术及信号采样平均处理,实现对光纤传感器后向布里渊散射信号在11 GHz高频段直接采集显示。结果表明,探测所得布里渊散射信号峰值功率可达50 mV,能有效降低解调系统信号检测难度,改善了系统信噪比(SNR)。初步实验结果证明了该方案的可行性。
Resumo:
A distributed-feedback (DFB) laser and a high-speed electroabsorption (EA) modulator are integrated, on the basis of the selective area MOVPE growth (SAG) technique and the ridge waveguide structure, for a 10 Gbit s(-1) optical transmission system. The integrated DFB laser/EA modulator device is packaged in a compact module with a 20% optical coupling efficiency to the single-mode fibre. The typical threshold current is 15 mA, and the side-mode suppression ratio is over 40 dB with the single-mode operation at 1550 nm. The module exhibits 1.2 mW fibre output power at a laser gain current of 70 mA and a modulator bias voltage of 0 V. The 3 dB bandwidth is 12 GHz. A dynamic extinction ratio of over 10 dB has been successfully achieved under 10 Gbit s(-1) non-return to zero (NRZ) operation, and a clearly open eye diagram is obtained.
Resumo:
A 1.55 mu m InGaAsP/InGaAsP multiple-quantum-well electro-absorption modulator (EAM) monolithically integrated with a distributed feedback laser (DFB) diode has been realized based on a novel butt-joint scheme by ultra-low metal-organic vapour phase epitaxy for the first time. The threshold current of 25 mA and an extinction ratio of more than 30 dB are obtained by using the novel structure. The beam divergence angles at the horizontal and vertical directions are as small as 19.3 degrees x 13 degrees, respectively, without a spot-size converter by undercutting the InGaAsP active region. The capacitance of the ridge waveguide device with a deep mesa buried by polyimide was reduced down to 0.30 pF.