111 resultados para Demography of Al-Andalus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the structural and optical properties of high Al-content AlInGaN epilayers with different thicknesses grown on GaN/sapphire templates by metalorganic chemical vapor deposition (MOCVD). Direct evidences of the gradual evolution of the content of Al, Ga and In along the growth direction were obtained. When the film thickness was over a certain value, however, the AlInGaN epilayer with constant element contents began to form. These results were also supported by the blue shift and splitting of the photoluminescence (PL) peak. For the thinnest epilayer, the surface was featured with outcrops of threading dislocations (TDs) which suggested a spiral growth mode. With increase in thickness, step-flow growth mode and V-shaped pits were observed, and the steps terminated at the pits. (C) 2008 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Undoped and Al-, Ga-, and In-doped Bi4Ti3O12 thin films were prepared on fused quartz substrates by chemical solution deposition. Their microstructures and optical properties were investigated by x-ray diffraction and UV-visible-NIR spectrophotometer, respectively. The optical band-gap energies, Urbach energies, and linear refractive indices of all the films are derived from the transmittance spectrum. Following the single oscillator model, the dispersion parameters such as the average oscillator energy (E-0) and dispersion energy (E-d) are achieved. The energy band gap and refractive indices are found to decrease with introducing the dopants of Al, Ga, and In, which is useful for the band-gap engineering and optical waveguide devices. The refractive index dispersion parameter (E-0/S-0) increases and the chemical bonding quantity (beta) decreases in all the films compared with those of bulk. It is supposed to be caused by the nanosize grains in films. (c) 2009 American Institute of Physics. [DOI 10.1063/1.3138813]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the optical properties of AlGaN grown on sapphire. It is found that two main luminescence peaks occur in the cathodoluminescence (CL) spectra of AlGaN films, and their energy separation increases with the increase of Al source flux during the growth. Spatially resolved CL investigations have shown that the line splitting is a result of variation of AlN mole fraction within the layer. The Al composition varies in both lateral and vertical direction. It is suggested that the difference in the surface mobility of Al and Ga atoms, especially, its strong influence on the initial island coalescence process and the formation of island-like regions on the uneven film surface, is responsible for the Al composition inhomogeneity. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microscopic luminescence and Raman scattering study was carried on AIInGaN quaternary alloy. Based on the analyses of SEM image and cathodoluminescence spectra measured around V-defects, the correlation between V-defect formation and indium segregation was clarified. Raman scattering of thin AlInGaN epilayers was investigated by using the short wavelength excitation of 325nm laser line. The frequency shift of A(1)(LO) phonon induced by the change of Al composition in alloy was observed. The Raman scattering of LO phonons was found to be resonantly enhanced with outgoing resonance, and it is attributed to the cascade-like electron-multiphonon interaction mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deep level luminescence of crack-free Al0.25Ga0.75N layers grown on a GaN template with a high-temperature grown AlN interlayer has been studied using spatially resolved cathodoluminescence (CL) spectroscopy. The CL spectra of Al0.25Ga0.75N grown on a thin AlN interlayer present a deep level aquamarine luminescence (DLAL) band at about 2.6 eV and a deep level violet luminescence (DLVL) band at about 3.17 eV. Cross-section line scan CL measurements on a cleaved sample edge clearly reveal different distributions of DLAL-related and DLVL-related defects in AlGaN along the growth direction. The DLAL band of AlGaN is attributed to evolve from the yellow luminescence band of GaN, and therefore has an analogous origin of a radiative transition between a shallow donor and a deep acceptor. The DLVL band is correlated with defects distributed near the GaN/AlN/AlGaN interfaces. Additionally, the lateral distribution of the intensity of the DLAL band shows a domainlike feature which is accompanied by a lateral phase separation of Al composition. Such a distribution of deep level defects is probably caused by the strain field within the domains. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Al composition of metalorganic chemical vapor deposition (MOCVD)-grown AlGaN alloy layers is found to be greatly influenced by the parasitic reaction between ammonia (NH3) and trimethylaluminum (TMAI). The growth process of AlN is carefully investigated by monitoring the in situ optical reflection. The abnormal dependencies of growth rate on growth temperature, reactor pressure, and flux of NH3 are observed and can be well explained by the effect of parasitic reaction. The increase of growth rate with increasing flux of TMAI is found to depend on the growth temperature and reactor pressure due to the presence of parasitic effect. A relatively low growth temperature and a reduced reactor pressure are suggested for the effective decrease of parasitic reaction during the MOCVD growth of AlN and probably lead to a more effective incorporation of Al into the AlGaN layers. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the growth and optical properties of AlInGaN alloys in this article. By the measurement of three samples, we found that the incorporation of In decreases with the increase of temperature, while there is nearly no change for the incorporation of Al. The sample grown at the lowest temperature had the best material and optical properties, which owes to the high In component, because the In component can reduce defects and improve the material quality. We also used the time-resolved photoluminescence(PL) to study the mechanism of recombination of carriers, and found that the time dependence of PL intensity was not in exponential decay, but in stretched-exponential decay. Through the study of the character of this decay, we come to the conclusion that the emission comes from the recombination of localized excitons. Once more, this localization exhibites the character of quantum dots, and the stretched, exponential decay results from the hopping of carriers between different localized states. In addition, we have used the relation of emission energy dependence of carrier's lifetime and the character of radiative recombination and non-radiative combination to confirm our conclusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AlxInyGa1-x-yN epilayers have been grown by metalorganic chemical vapor deposition (MOCVD) at different temperatures from 800 to 870degreesC. The incorporation of indium is found to increase with decreasing growth temperature, while the incorporation of Al remains nearly constant. The optical properties of the samples have been investigated by photoluminescence (PL) and time-resolved photoluminescence (TRPL) at different temperatures. The results show that the sample grown at 820 C exhibits the best optical quality for its large PL intensity and the absence of the yellow luminescence. Furthermore the temperature-dependent PL and TRPL of the sample reveals its less exciton localization effect caused by alloy fluctuations. In the scanning electron microscopy measurement, much uniform surface morphology is found for the sample grown at 820degreesC, in good agreement with the PL results, The improvement of AlxInyGa1-x-yN quality is well correlated with the incorporation of indium into AlGaN and the possible mechanism is discussed. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gamma-Al2O3 films were grown on Si (100) substrates using the sources of TMA (Al (CH3)(3)) and O-2 by very low-pressure chemical vapor deposition (VLP-CVD). It has been found that the gamma-Al2O3 film has a mirror-like surface and the RMS was about 2.5nm. And the orientation relationship was gamma-Al2O3(100)/Si(100). The thickness uniformity of gamma-Al2O3 films for 2-inch epi-wafer was less than 5%. The X-ray diffraction (XRD) and reflection high-energy electron diffraction (RHEED) results show that the crystalline quality of the film was improved after the film was annealed at 1000degreesC in O-2 atmosphere. The high-frequency C-V and leakage current of Al/gamma-Al2O3/Si capacitor were also measured to verify the annealing effect of the film. The results show that the dielectric constant increased from 4 to 7 and the breakdown voltage for 65-nm-thick gamma-Al2O3 film on silicon increases from 17V to 53V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using Al-Mg and Al-Mg-Y alloys as raw materials and nitrogen as gas reactants, AIN powders and composite AIN powders by in-situ synthesis method were prepared. AIN lumps prepared by the nitriding of Al-Mg and Al-Mg-Y alloys have porous microstructure, which is favorable for pulverization. They have high purity, containing 1.23 % (mass fraction) oxygen impurity, and consisted of AIN single phase . The average particle size of AIN powders is 6.78 mum. Composite AlN powders consist of AlN phases and rare, earth oxide Y2O3 phase. The distribution of particle size of AIN powders shows two peaks. In view, of packing factor, AIN powders with such size distribution can easily be sintered to high density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIN powders were prepared by in-situ synthesis technique. It is a reaction of binary molten Al-Mg alloys with highly pure nitrogen. It was confirmed through thermodynamics calculation that Mg element in Al-Mg alloys can decrease oxygen content in the reacting system. Thus, nitridation reaction can be performed to form AIN. Moreover, an analysis of kinetics shows that the nitridation reaction of Al-Mg alloys can be accelerated and transferred rapidly with the increment of Mg content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal processing of strained In0.2Ga0.8As/GaAs graded-index separate confinement heterostructure single quantum well laser diodes grown by molecular beam epitaxy is investigated. It is found that rapid thermal annealing can improve the 77K photoluminescence efficiency and electron emission from the active layer, due to the removal of nonradiative centers from the InGaAs/GaAs interface. Because of the interdiffusion of Al and Ga atoms, rapid thermal annealing increases simultaneously the density of DX centers in the AlGaAs graded layer. The current stressing experiments of postgrowth and annealed laser diodes are indicative of a corresponding increase in the concentration of DX centers, suggesting that DX centers may be responsible for the degradation of laser diode performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Al-related DX-like centers were observed in n-type Al-doped ZnS1-xTex epilayers grown by molecular-beam epitaxy on GaAs substrates. The capacitance-voltage measurement, deep-level transient spectroscopy, and photoconductivity spectroscopy revealed that the behaviors of Al donors in ZnS1-xTex were similar to the so-called DX centers in AlxGa1-xAs. The optical ionization energies (E-i) and emission barriers (E-e) for the observed two Al-related DX-like centers were determined as E-i similar to 1.0 and 2.0cV and E-e similar to 0.21 and 0.39 eV, respectively. It was also shown that the formation of Al-related DX-like centers resulted in a significantly large lattice relaxation in ZnS1-xTex. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quasi-thermodynamic analysis of the MOVPE growth of AlxGa1-xN alloy using TMGa, TMA1 and ammonia has been proposed. The effect of varying growth conditions (growth temperature, reactor pressure, input V/III ratio, hydrogen pressure fraction in the carrier gas and the decomposed fraction of ammonia) on the distribution coefficient of Al has been calculated. In the case of AlxGa1-xN, preferential incorporation of Al is predicted. The calculated relationship between input vapour and deposited solid composition has been compared with data in the literature. A good agreement between the calculated and the experimental composition shows that our improved model is suitable for applying to the AlxGa1-xN alloy grown by MOVPE. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of band bending and polarization on the valence band offset measured by x-ray photoelectron spectroscopy (XPS) is discussed, and a modification method based on a modified self-consistent calculation is proposed to eliminate the influence and thus increasing the precision of XPS. Considering the spontaneous polarization at the surfaces and interfaces and the different positions of Fermi levels at the surfaces, we compare the energy band structures of Al/Ga-polar AlN/GaN and N-polar GaN/AlN heterojunctions, and give corrections to the XPS-measured valence band offsets. Other AlN/GaN heterojunctions and the piezoelectric polarization are also introduced and discussed in this paper.