128 resultados para Covalent binding
Resumo:
The binding energy of an exciton bound to an ionized donor impurity (D+,X) located st the center or the edge in GaAs-AlxGa1-xAs quantum wells is calculated variationally for the well width from 10 to 300 Angstrom by using a two-parameter wave function, The theoretical results are discussed and compared with the previous experimental results.
Resumo:
The binding energies of excitons bound to neutral donors in two-dimensional (2D) semiconductors within the spherical-effective-mass approximation, which are nondegenerate energy bands, have been calculated by a variational method for a relevant range of the effective electron-to-hole mass ratio sigma. The ratio of the binding energy of a 2D exciton bound to a neutral donor to that of a 2D neutral donor is found to be from 0.58 to 0.10. In the limit of vanishing sigma and large sigma, the results agree fairly well with previous experimental results. The results of this approach are compared with those of earlier theories.
Resumo:
The energy bands of zinc-blende and wurtzite GaN are calculated with the empirical pseudopotential method, and the pseudopotential parameters for Ga and N atoms are-given. The calculated energy bands are in agreement with those obtained by the ab initio method. The effective-mass theory for the semiconductors of wurtzite structure is established, and the effective-mass parameters of GaN for both structures are given The binding energies of acceptor states are calculated by solving strictly the effective-mass equations. The binding energies of donor and acceptor are 24 and 142 meV for the zinc-blende structure, 20 and 131, and 97 meV for the wurtzite structure, respectively, which are consistent with recent experimental results. It is proposed that there are two kinds of acceptor in wurtzite GaN. One kind is the general acceptor such as C, which substitutes N, which satisfies the effective-mass theory. The other kind of acceptor includes Mg, Zn, Cd, etc., the binding energy of these accepters is deviated from that given by the effective mass theory. In this report, wurtzite GaN is grown by the molecular-beam epitaxy method, and the photoluminescence spectra were measured. Three main peaks are assigned to the donor-acceptor transitions from two kinds of accepters. Some of the transitions were identified as coming from the cubic phase of GaN, which appears randomly within the predominantly hexagonal material. [S0163-1829(99)15915-0].
Resumo:
We study the effect of an external biaxial stress on the light emission of single InGaAs/GaAs(001) quantum dots placed onto piezoelectric actuators. With increasing compression, the emission blueshifts and the binding energies of the positive trion (X+) and biexciton (XX) relative to the neutral exciton (X) show a monotonic increase. This phenomenon is mainly ascribed to changes in electron and hole localization and it provides a robust method to achieve color coincidence in the emission of X and XX, which is a prerequisite for the possible generation of entangled photon pairs via the recently proposed "time reordering'' scheme.
Resumo:
The reduction of exciton binding energy induced by a perpendicular electric field in a stepped quantum well is studied. From continuous-wave photoluminescence spectra at 77 K we have observed an obvious blueshift of the exciton peak due to a spatially direct-to-indirect transition of excitons. A simple method is used to calculate the exciton binding energy while the inhomogeneous broadening is taken into account in a simple manner. The calculated result reproduces remarkably well the experimental observation.
Resumo:
We experimentally study the effect of perpendicular electric field on the exciton binding energy using a specially designed step quantum well. From photoluminescence spectra at the temperature of 77 K, we have directly observed remarkable blueshift of the exciton peak due to the transition from spatially direct to spatially indirect excitons induced by electric field. (C) 1995 American Institute of Physics.
Resumo:
The binding energy of a biexciton in GaAs quantum-well wires is calculated variationally by use of a two-parameter trial wavefunction and a one-dimensional equivalent potential model. There is no artificial parameter added in our calculation. Our results agree fairly well with the previous results. It is found that the binding energies are closely correlative to the size of wire. The binding energy of biexcitons is smaller than that of neutral bound excitons in GaAs quantum-well wires when the dopant is located at the centre of the wires.
Resumo:
The hole effective-mass Hamiltonian for the semiconductors of wurtzite structure is established, and the effective-mass parameters of GaN and AlxGa1-xN are given. Besides the asymmetry in the z and x, y directions, the linear term of the momentum operator in the Hamiltonian is essential in determining the valence band structure, which is different from that of the zinc-blende structure. The binding energies of acceptor states are calculated by solving strictly the effective-mass equations. The binding energies of donor and acceptor for wurtzite GaN are 20 and 131, 97 meV, respectively, which are inconsistent with the recent experimental results. It is proposed that there are two kinds of acceptors in wurtzite GaN. One kind is the general acceptor such as C, substituting N, which satisfies the effective-mass theory, and the other includes Mg, Zn, Cd etc., the binding energy of which deviates from that given by the effective-mass theory. Experimentally, wurtzite GaN was grown by the MBE method, and the PL spectra were measured. Three main peaks are assigned to the DA transitions from the two kinds of acceptor. Some of the transitions were identified as coming from the cubic phase of GaN, which appears randomly within the predominantly hexagonal material. The binding energy of acceptor in ALN is about 239, 158 meV, that in AlxGa1-xN alloys (x approximate to 0.2) is 147, 111 meV, close to that in GaN. (C) 2000 Published by Elsevier Science S.A. All rights reserved.