118 resultados para Ceramic industries


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical model about the size-dependent interface energy between two thin films with different materials is developed by considering the chemical bonding contribution based on the thermodynamic expressions and the structure strain contribution based on the mechanical characteristics. The interface energy decreases with reducing thickness of thin films, and is determined by such available thermodynamic and mechanical parameters as the melting entropy, the melting enthalpy, the shear modulus of two materials, etc. The predicted interface energies of some metal/MgO and metal/Al2O3 interfaces based on the model are consistent with the results based on the molecular mechanics calculation. Furthermore, the interface fracture properties of Ag/MgO and Ni/Al2O3 based on the atomistic simulation are further compared with each other. The fracture strength and the toughness of the interface with the smaller structure interface energy are both found to be lower. The intrinsic relations among the interface energy, the interface strength, and the fracture toughness are discussed by introducing the related interface potential and the interface stress. The microscopic interface fracture toughness is found to equal the structure interface energy in nanoscale, and the microscopic fracture strength is proportional to the fracture toughness. (C) 2010 American Institute of Physics. [doi:10.1063/1.3501090]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crack patterns generated in a real ceramic plate and in a plate stacked by ceramic slabs under quenching are experimentally studied. The results here reveal that there are some distinct differences between the two crack patterns. The reasons that caused the differences are the size and boundary effects of the slabs. These crack patterns are very useful to understand the failure mechanisms of ceramic materials in thermal shock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A universal Biot number, which not only describes the susceptibility of ceramic cylinders to quenching but also determines the duration that ceramic cylinders are subjected to thermal stress during thermal shock, is theoretically obtained. The analysis proves that thermal shock failure of ceramic cylinders with a Biot number greater than the critical value is a rapid process, which only occurs in the initial heat conduction regime. The results provide a guide to the selection of ceramic materials for thermostructural engineering, with particular reference to thermal shock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-dimensional isothermal pseudo-homogeneous parallel flow model was developed for the methanol synthesis from CO2 in a silicone rubber/ceramic composite membrane reactor. The fourth-order Runge-Kutta method was adopted to simulate the process behaviors in the membrane reactor. How those parameters affect the reaction behaviors in the membrane reactor, such as Damkohler number Da, pressure ratio p(r), reaction temperature T, membrane separation factor alpha, membrane permeation parameter phi , as well as the non-uniform parameter of membrane permeation L-1, were discussed in detail. Parts of the theoretical results were tested and verified; the experimental results showed that the conversion of the main reaction in the membrane reactor increased by 22% against traditional fixed bed reactor, and the optimal non-uniform parameter of membrane permeation rate, L-1.opt ,does exist. (C) 2003 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NaA zeolite membrane was successfully synthesized on a ceramic hollow fiber with an outer diameter of 400 mum, a thickness of 100 mum and an average pore radius of 0.1 mum. The as-synthesized membranes were characterized by XRD, SEM as well as gas permeation. A continuous C NaA zeolite membrane formed after a three-stage synthesis. The membrane thickness was similar to5 mum. Gas permeation data indicated that a relatively high quality NaA zeolite membrane formed on the ceramic hollow fiber support. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The double perovskite oxide Sr2CrNbO6 has a cubic structure according to powder X-ray diffraction. After reducing in CO, Sr2CrNbO6 still exhibited a cubic structure refined by Rietveld technique. The TG analysis indicated that Sr2CrNbO6 loses 0.127 oxygen per formula unit from 400 to 700 degrees C in H-2. The morphology and compositions of this ceramic did not significantly change on reduction